Patents by Inventor Hironobu Shoji
Hironobu Shoji has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11908976Abstract: An object is to provide a highly reliable light emitting device which is thin and is not damaged by external local pressure. Further, another object is to manufacture a light emitting device with a high yield by preventing defects of a shape and characteristics due to external stress in a manufacture process. A light emitting element is sealed between a first structure body in which a fibrous body is impregnated with an organic resin and a second structure body in which a fibrous body is impregnated with an organic resin, whereby a highly reliable light emitting device which is thin and has intensity can be provided. Further, a light emitting device can be manufactured with a high yield by preventing defects of a shape and characteristics in a manufacture process.Type: GrantFiled: January 13, 2023Date of Patent: February 20, 2024Inventors: Yoshiaki Oikawa, Shingo Eguchi, Mitsuo Mashiyama, Masatoshi Kataniwa, Hironobu Shoji, Masataka Nakada, Satoshi Seo
-
Publication number: 20230170444Abstract: An object is to provide a highly reliable light emitting device which is thin and is not damaged by external local pressure. Further, another object is to manufacture a light emitting device with a high yield by preventing defects of a shape and characteristics due to external stress in a manufacture process. A light emitting element is sealed between a first structure body in which a fibrous body is impregnated with an organic resin and a second structure body in which a fibrous body is impregnated with an organic resin, whereby a highly reliable light emitting device which is thin and has intensity can be provided. Further, a light emitting device can be manufactured with a high yield by preventing defects of a shape and characteristics in a manufacture process.Type: ApplicationFiled: January 13, 2023Publication date: June 1, 2023Applicant: Semiconductor Energy Laboratory Co., Ltd.Inventors: Yoshiaki Oikawa, Shingo EGUCHI, Mitsuo MASHIYAMA, Masatoshi KATANIWA, Hironobu SHOJI, Masataka NAKADA, Satoshi SEO
-
Patent number: 11557697Abstract: An object is to provide a highly reliable light emitting device which is thin and is not damaged by external local pressure. Further, another object is to manufacture a light emitting device with a high yield by preventing defects of a shape and characteristics due to external stress in a manufacture process. A light emitting element is sealed between a first structure body in which a fibrous body is impregnated with an organic resin and a second structure body in which a fibrous body is impregnated with an organic resin, whereby a highly reliable light emitting device which is thin and has intensity can be provided. Further, a light emitting device can be manufactured with a high yield by preventing defects of a shape and characteristics in a manufacture process.Type: GrantFiled: August 18, 2021Date of Patent: January 17, 2023Inventors: Yoshiaki Oikawa, Shingo Eguchi, Mitsuo Mashiyama, Masatoshi Kataniwa, Hironobu Shoji, Masataka Nakada, Satoshi Seo
-
Publication number: 20210384380Abstract: An object is to provide a highly reliable light emitting device which is thin and is not damaged by external local pressure. Further, another object is to manufacture a light emitting device with a high yield by preventing defects of a shape and characteristics due to external stress in a manufacture process. A light emitting element is sealed between a first structure body in which a fibrous body is impregnated with an organic resin and a second structure body in which a fibrous body is impregnated with an organic resin, whereby a highly reliable light emitting device which is thin and has intensity can be provided. Further, a light emitting device can be manufactured with a high yield by preventing defects of a shape and characteristics in a manufacture process.Type: ApplicationFiled: August 18, 2021Publication date: December 9, 2021Applicant: Semiconductor Energy Laboratory Co., Ltd.Inventors: Yoshiaki Oikawa, Shingo Eguchi, Mitsuo Mashiyama, Masatoshi Kataniwa, Hironobu Shoji, Masataka Nakada, Satoshi Seo
-
Patent number: 11101407Abstract: An object is to provide a highly reliable light emitting device which is thin and is not damaged by external local pressure. Further, another object is to manufacture a light emitting device with a high yield by preventing defects of a shape and characteristics due to external stress in a manufacture process. A light emitting element is sealed between a first structure body in which a fibrous body is impregnated with an organic resin and a second structure body in which a fibrous body is impregnated with an organic resin, whereby a highly reliable light emitting device which is thin and has intensity can be provided. Further, a light emitting device can be manufactured with a high yield by preventing defects of a shape and characteristics in a manufacture process.Type: GrantFiled: February 7, 2019Date of Patent: August 24, 2021Inventors: Yoshiaki Oikawa, Shingo Eguchi, Mitsuo Mashiyama, Masatoshi Kataniwa, Hironobu Shoji, Masataka Nakada, Satoshi Seo
-
Publication number: 20190189856Abstract: An object is to provide a highly reliable light emitting device which is thin and is not damaged by external local pressure. Further, another object is to manufacture a light emitting device with a high yield by preventing defects of a shape and characteristics due to external stress in a manufacture process. A light emitting element is sealed between a first structure body in which a fibrous body is impregnated with an organic resin and a second structure body in which a fibrous body is impregnated with an organic resin, whereby a highly reliable light emitting device which is thin and has intensity can be provided. Further, a light emitting device can be manufactured with a high yield by preventing defects of a shape and characteristics in a manufacture process.Type: ApplicationFiled: February 7, 2019Publication date: June 20, 2019Applicant: Semiconductor Energy Laboratory Co., Ltd.Inventors: Yoshiaki OIKAWA, Shingo Eguchi, Mitsuo Mashiyama, Masatoshi Kataniwa, Hironobu Shoji, Masataka Nakada, Satoshi Seo
-
Patent number: 10205062Abstract: An object is to provide a highly reliable light emitting device which is thin and is not damaged by external local pressure. Further, another object is to manufacture a light emitting device with a high yield by preventing defects of a shape and characteristics due to external stress in a manufacture process. A light emitting element is sealed between a first structure body in which a fibrous body is impregnated with an organic resin and a second structure body in which a fibrous body is impregnated with an organic resin, whereby a highly reliable light emitting device which is thin and has intensity can be provided. Further, a light emitting device can be manufactured with a high yield by preventing defects of a shape and characteristics in a manufacture process.Type: GrantFiled: September 4, 2018Date of Patent: February 12, 2019Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventors: Yoshiaki Oikawa, Shingo Eguchi, Mitsuo Mashiyama, Masatoshi Kataniwa, Hironobu Shoji, Masataka Nakada, Satoshi Seo
-
Publication number: 20180374995Abstract: An object is to provide a highly reliable light emitting device which is thin and is not damaged by external local pressure. Further, another object is to manufacture a light emitting device with a high yield by preventing defects of a shape and characteristics due to external stress in a manufacture process. A light emitting element is sealed between a first structure body in which a fibrous body is impregnated with an organic resin and a second structure body in which a fibrous body is impregnated with an organic resin, whereby a highly reliable light emitting device which is thin and has intensity can be provided. Further, a light emitting device can be manufactured with a high yield by preventing defects of a shape and characteristics in a manufacture process.Type: ApplicationFiled: September 4, 2018Publication date: December 27, 2018Applicant: Semiconductor Energy Laboratory Co., Ltd.Inventors: Yoshiaki Oikawa, Shingo EGUCHI, Mitsuo MASHIYAMA, Masatoshi KATANIWA, Hironobu SHOJI, Masataka NAKADA, Satoshi SEO
-
Patent number: 10079330Abstract: An object is to provide a highly reliable light emitting device which is thin and is not damaged by external local pressure. Further, another object is to manufacture a light emitting device with a high yield by preventing defects of a shape and characteristics due to external stress in a manufacture process. A light emitting element is sealed between a first structure body in which a fibrous body is impregnated with an organic resin and a second structure body in which a fibrous body is impregnated with an organic resin, whereby a highly reliable light emitting device which is thin and has intensity can be provided. Further, a light emitting device can be manufactured with a high yield by preventing defects of a shape and characteristics in a manufacture process.Type: GrantFiled: October 10, 2014Date of Patent: September 18, 2018Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventors: Yoshiaki Oikawa, Shingo Eguchi, Mitsuo Mashiyama, Masatoshi Kataniwa, Hironobu Shoji, Masataka Nakada, Satoshi Seo
-
Publication number: 20150060890Abstract: An object is to provide a highly reliable light emitting device which is thin and is not damaged by external local pressure. Further, another object is to manufacture a light emitting device with a high yield by preventing defects of a shape and characteristics due to external stress in a manufacture process. A light emitting element is sealed between a first structure body in which a fibrous body is impregnated with an organic resin and a second structure body in which a fibrous body is impregnated with an organic resin, whereby a highly reliable light emitting device which is thin and has intensity can be provided. Further, a light emitting device can be manufactured with a high yield by preventing defects of a shape and characteristics in a manufacture process.Type: ApplicationFiled: October 10, 2014Publication date: March 5, 2015Inventors: Yoshiaki Oikawa, Shingo Eguchi, Mitsuo Mashiyama, Masatoshi Kataniwa, Hironobu Shoji, Masataka Nakada, Satoshi Seo
-
Patent number: 8951878Abstract: It is an object of the present invention to provide a method for manufacturing an SOI substrate having an SOI layer that can be used in practical applications with high yield even when a flexible substrate such as a glass substrate or a plastic substrate is used. Further, it is another object of the present invention to provide a method for manufacturing a thin semiconductor device using such an SOI substrate with high yield. When a single-crystal semiconductor substrate is bonded to a flexible substrate having an insulating surface and the single-crystal semiconductor substrate is separated to manufacture an SOI substrate, one or both of bonding surfaces are activated, and then the flexible substrate having an insulating surface and the single-crystal semiconductor substrate are attached to each other.Type: GrantFiled: December 5, 2013Date of Patent: February 10, 2015Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventors: Yasuhiro Jinbo, Hironobu Shoji, Hideto Ohnuma, Shunpei Yamazaki
-
Patent number: 8916230Abstract: When a mask layer is formed, a first liquid composition containing a mask-layer-forming material is applied on an outer side of a pattern that is desired to be formed (corresponding to a contour or an edge portion of a pattern) to form a first mask layer having a frame shape. A second liquid composition containing a mask-layer-forming material is applied so as to fill a space inside the first mask layer having a frame shape to form a second mask layer. The first mask layer and the second mask layer are formed to be in contact with each other, and the first mask layer is formed to surround the second mask layer. Therefore, the first mask layer and the second mask layer can be used as one continuous mask layer.Type: GrantFiled: October 28, 2011Date of Patent: December 23, 2014Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventors: Shunpei Yamazaki, Hironobu Shoji, Ikuko Kawamata
-
Patent number: 8900970Abstract: A technique for peeling an element manufactured through a process at relatively low temperature (lower than 500° C.) from a substrate and transferring the element to a flexible substrate (typically, a plastic film). With the use of an existing manufacturing device for a large glass substrate, a molybdenum film (Mo film) is formed over a glass substrate, an oxide film is formed over the molybdenum film, and an element is formed over the oxide film through a process at relatively low temperature (lower than 500° C.). Then, the element is peeled from the glass substrate and transferred to a flexible substrate.Type: GrantFiled: April 13, 2007Date of Patent: December 2, 2014Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventors: Junya Maruyama, Yasuhiro Jinbo, Hironobu Shoji, Hideaki Kuwabara, Shunpei Yamazaki
-
Patent number: 8860306Abstract: An object is to provide a highly reliable light emitting device which is thin and is not damaged by external local pressure. Further, another object is to manufacture a light emitting device with a high yield by preventing defects of a shape and characteristics due to external stress in a manufacture process. A light emitting element is sealed between a first structure body in which a fibrous body is impregnated with an organic resin and a second structure body in which a fibrous body is impregnated with an organic resin, whereby a highly reliable light emitting device which is thin and has intensity can be provided. Further, a light emitting device can be manufactured with a high yield by preventing defects of a shape and characteristics in a manufacture process.Type: GrantFiled: September 5, 2012Date of Patent: October 14, 2014Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventors: Yoshiaki Oikawa, Shingo Eguchi, Mitsuo Mashiyama, Masatoshi Kataniwa, Hironobu Shoji, Masataka Nakada, Satoshi Seo
-
Patent number: 8703579Abstract: A method of forming a semiconductor device is provided, including a step of forming a layer which absorbs light over one face of a first substrate, a step of providing a second substrate over the layer which absorbs light, a step of providing a mask to oppose the other face of the first substrate, and a step of transferring the part of the layer which absorbs light to the second substrate by irradiating the layer which absorbs light with a laser beam through the mask.Type: GrantFiled: July 20, 2011Date of Patent: April 22, 2014Assignee: Semiconductor Energy Laborator Co., Ltd.Inventors: Hidekazu Miyairi, Hironobu Shoji, Akihisa Shimomura, Eiji Higa, Tomoaki Moriwaka, Shunpei Yamazaki
-
Publication number: 20140087543Abstract: It is an object of the present invention to provide a method for manufacturing an SOI substrate having an SOI layer that can be used in practical applications with high yield even when a flexible substrate such as a glass substrate or a plastic substrate is used. Further, it is another object of the present invention to provide a method for manufacturing a thin semiconductor device using such an SOI substrate with high yield. When a single-crystal semiconductor substrate is bonded to a flexible substrate having an insulating surface and the single-crystal semiconductor substrate is separated to manufacture an SOI substrate, one or both of bonding surfaces are activated, and then the flexible substrate having an insulating surface and the single-crystal semiconductor substrate are attached to each other.Type: ApplicationFiled: December 5, 2013Publication date: March 27, 2014Applicant: Semiconductor Energy Laboratory Co., Ltd.Inventors: Yasuhiro JINBO, Hironobu SHOJI, Hideto OHNUMA, Shunpei YAMAZAKI
-
Patent number: 8629031Abstract: It is an object of the present invention to provide a method for manufacturing an SOI substrate having an SOI layer that can be used in practical applications with high yield even when a flexible substrate such as a glass substrate or a plastic substrate is used. Further, it is another object of the present invention to provide a method for manufacturing a thin semiconductor device using such an SOI substrate with high yield. When a single-crystal semiconductor substrate is bonded to a flexible substrate having an insulating surface and the single-crystal semiconductor substrate is separated to manufacture an SOI substrate, one or both of bonding surfaces are activated, and then the flexible substrate having an insulating surface and the single-crystal semiconductor substrate are attached to each other.Type: GrantFiled: February 5, 2013Date of Patent: January 14, 2014Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventors: Yasuhiro Jinbo, Hironobu Shoji, Hideto Ohnuma, Shunpei Yamazaki
-
Patent number: 8609464Abstract: To provide a simple method for manufacturing a semiconductor device in which deterioration in characteristics due to electrostatic discharge is reduced, a plurality of element layers each having a semiconductor integrated circuit and an antenna are sealed between a first insulator and a second insulator; a layered structure having a first conductive layer formed on a surface of the first insulator, the first insulator, the element layers, the second insulator, and a second conductive layer formed on a surface of the second insulator is formed; and the first insulator and the second insulator are melted, whereby the layered structure is divided so as to include at least one of the semiconductor integrated circuits and one of the antennas.Type: GrantFiled: June 2, 2009Date of Patent: December 17, 2013Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventors: Yoshiaki Oikawa, Hironobu Shoji, Shingo Eguchi
-
Patent number: 8520178Abstract: When a conductive layer is formed, a first liquid composition containing a conductive material is applied on an outer side of a pattern that is desired to be formed (corresponding to a contour or an edge portion of a pattern), and a first conductive layer (insulating layer) having a frame-shape is formed. A second liquid composition containing a conductive material is applied so as to fill a space inside the first conductive layer having a frame-shape, whereby a second conductive layer is formed. The first conductive layer and the second conductive layer are formed so as to be in contact with each other, and the first conductive layer is formed so as to surround the second conductive layer. Therefore, the first conductive layer and the second conductive layer can be used as one continuous conductive layer.Type: GrantFiled: July 27, 2010Date of Patent: August 27, 2013Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventors: Shunpei Yamazaki, Hironobu Shoji, Ikuko Kawamata
-
Patent number: 8399329Abstract: It is an object of the present invention to provide a method for manufacturing an SOI substrate having an SOI layer that can be used in practical applications with high yield even when a flexible substrate such as a glass substrate or a plastic substrate is used. Further, it is another object of the present invention to provide a method for manufacturing a thin semiconductor device using such an SOI substrate with high yield. When a single-crystal semiconductor substrate is bonded to a flexible substrate having an insulating surface and the single-crystal semiconductor substrate is separated to manufacture an SOI substrate, one or both of bonding surfaces are activated, and then the flexible substrate having an insulating surface and the single-crystal semiconductor substrate are attached to each other.Type: GrantFiled: March 12, 2010Date of Patent: March 19, 2013Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventors: Yasuhiro Jinbo, Hironobu Shoji, Hideto Ohnuma, Shunpei Yamazaki