Patents by Inventor Hiroshi Kotani

Hiroshi Kotani has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120242216
    Abstract: A light-emitting device that suppresses color unevenness can be provided. A transparent member can be disposed on a fluorescence-containing resin layer. Part of excitation light can be emitted upward from an edge surface of the fluorescence-containing resin layer directly and without passing through the transparent member. Thus, fluorescent light emitted in large quantities from a place near an edge surface of the transparent member can be mixed with the excitation light emitted from the edge surface of the fluorescence-containing resin layer directly without passing through the transparent member, thereby suppressing color unevenness at a location near the edge surface of the transparent member.
    Type: Application
    Filed: March 22, 2012
    Publication date: September 27, 2012
    Inventors: Hiroshi KOTANI, Takaaki SAKAI
  • Publication number: 20120188772
    Abstract: A light-emitting device having an LED element and a resin layer including a convex portion covering the LED element can suppress color unevenness to achieve light emission with uniform color distribution. The light-emitting device can include a substrate, an LED element mounted on the substrate, a resin layer which contains a wavelength conversion material and is formed on the substrate to cover the LED element, the resin layer including a convex portion directly covering the LED element and a flat thin film portion extending around the convex portion, and a reflective portion which is formed over the thin film portion around the convex portion. A diffusion portion can be formed to cover the convex portion of the resin layer.
    Type: Application
    Filed: January 23, 2012
    Publication date: July 26, 2012
    Inventors: Takaaki Sakai, Hiroshi Kotani, Takahiko Nozaki
  • Patent number: 8143618
    Abstract: A ZnO based semiconductor device includes: a lamination structure including a first semiconductor layer containing ZnO based semiconductor of a first conductivity type and a second semiconductor layer containing ZnO based semiconductor of a second conductivity type opposite to the first conductivity type, formed above the first semiconductor layer and forming a pn junction together with the first semiconductor layer; and a Zn—Si—O layer containing compound of Zn, Si and O and covering a surface exposing the pn junction of the lamination structure.
    Type: Grant
    Filed: February 17, 2009
    Date of Patent: March 27, 2012
    Assignee: Stanley Electric Co., Ltd.
    Inventors: Hiroshi Kotani, Michihiro Sano, Hiroyuki Kato, Naochika Horio, Akio Ogawa, Tomofumi Yamamuro
  • Patent number: 8039867
    Abstract: A ZnO-containing semiconductor layer, doped with Se, has an emission peak wavelength in visual light and has a band gap equivalent to a band gap of ZnO.
    Type: Grant
    Filed: August 13, 2009
    Date of Patent: October 18, 2011
    Assignee: Stanley Electric Co., Ltd.
    Inventors: Akio Ogawa, Michihiro Sano, Hiroyuki Kato, Naochika Horio, Hiroshi Kotani, Tomofumi Yamamuro
  • Patent number: 7968363
    Abstract: A manufacture method for zinc oxide (ZnO) based semiconductor crystal includes providing a substrate having a Zn polarity plane; and reacting at least zinc (Zn) and oxygen (O) on the Zn polarity plane of said substrate to grow ZnO based semiconductor crystal on the Zn polarity plane of said substrate in a Zn rich condition. (a) An n-type ZnO buffer layer is formed on a Zn polarity plane of a substrate. (b) An n-type ZnO layer is formed on the surface of the n-type ZnO buffer layer. (c) An n-type ZnMgO layer is formed on the surface of the n-type ZnO layer. (d) A ZnO/ZnMgO quantum well layer is formed on the surface of the n-type ZnMgO layer, by alternately laminating a ZnO layer and a ZnMgO layer. @(e) A p-type ZnMgO layer is formed on the surface of the ZnO/ZnMgO quantum well layer. (f) A p-type ZnO layer is formed on the surface of the p-type ZnMgO layer. @(g) An electrode is formed on the n-type ZnO layer and p-type ZnO layer. The n-type ZnO layer is formed under a Zn rich condition at the step (b).
    Type: Grant
    Filed: March 29, 2010
    Date of Patent: June 28, 2011
    Assignee: Stanley Electric Co., Ltd.
    Inventors: Hiroshi Kotani, Michihiro Sano, Hiroyuki Kato, Akio Ogawa
  • Patent number: 7968905
    Abstract: A ZnO-containing semiconductor layer contains Se or S added to ZnO and has an emission peak wavelength of ultraviolet light and an emission peak wavelength of visual light. By combining the ZnO-containing semiconductor layer with phosphor or semiconductor which is excited by the emitted ultraviolet light and emits visual light, visual light at various wavelengths can be emitted.
    Type: Grant
    Filed: July 1, 2008
    Date of Patent: June 28, 2011
    Assignee: Stanley Electric Co., Ltd.
    Inventors: Tomofumi Yamamuro, Michihiro Sano, Naochika Horio, Hiroyuki Kato, Akio Ogawa, Hiroshi Kotani
  • Publication number: 20110133236
    Abstract: A light emitting device that can radiate heat generated by a semiconductor light emitting element and/or a resin layer at not only a position directly under the light emitting element, but also a position remote from such a position with respect to the main plane direction is provided. In the light emitting device, a light emitting element is carried on a substrate, and a resin covers the light emitting element. An anisotropic heat conduction material showing a heat conductivity for the substrate main plane direction larger than that for the substrate thickness direction is carried on the substrate. A side of the anisotropic heat conduction material contacts with the resin. Thereby, the anisotropic heat conduction material can receive heat of the resin, conduct it along the main plane direction, and radiate it to the substrate at a position remote from the light emitting element and/or the resin.
    Type: Application
    Filed: December 3, 2010
    Publication date: June 9, 2011
    Inventors: Takahiko Nozaki, Hiroshi Kotani
  • Publication number: 20110116271
    Abstract: In the production of a light emitting device, in which a plurality of light emitting element parts carrying LED elements are formed on a substrate, and the substrate is diced, generation of shaving dusts is suppressed at the time of the dicing, and breakage of the substrate during the production process can be prevented. In the process of forming a slit crossing a region for forming a light emitting element part in a metal substrate, a recess which serves as a resin reservoir can be formed so as to cross the slit. The slit can be filled with an insulating material, the recess can be filled with a resin, and they both can be cured. A light emitting element part can be formed in the region for forming the light emitting element part, the metal substrate can be cut into units comprising one or a plurality of the light emitting element parts, and can be mounted on a printed circuit board on which a pattern is formed.
    Type: Application
    Filed: November 17, 2010
    Publication date: May 19, 2011
    Inventors: Shunya Ide, Masanori Sato, Takahiko Nozaki, Takaaki Sakai, Hiroshi Kotani
  • Patent number: 7943927
    Abstract: A ZnO based semiconductor light emitting device includes: a first semiconductor layer containing ZnO1-x1Sx1; a second semiconductor layer formed above the first semiconductor layer and containing ZnO1-x2Sx2; and a third semiconductor layer formed above the second semiconductor layer and containing ZnO1-x3Sx3, wherein an S composition x1 of the first semiconductor layer, an S composition x2 of the second semiconductor layer and an S composition x3 of the third semiconductor layer are so selected that an energy of the second semiconductor layer at the lower end of a conduction band becomes lower than both energies of the first and third semiconductor layers at the lower end of the conduction bands, and that an energy of the second semiconductor layer at the upper end of a valence band becomes higher than both energies of the first and third semiconductor layers at the upper end of the valence bands.
    Type: Grant
    Filed: July 13, 2009
    Date of Patent: May 17, 2011
    Assignee: Stanley Electric Co., Ltd.
    Inventors: Akio Ogawa, Michihiro Sano, Hiroyuki Kato, Hiroshi Kotani, Tomofumi Yamamuro
  • Publication number: 20110084275
    Abstract: A ZnO-containing semiconductor layer contains Se added to ZnO and has an emission peak wavelength of ultraviolet light and an emission peak wavelength of visual light. By combining the ZnO-containing semiconductor layer with phosphor or a semiconductor which is excited by the emitted ultraviolet light and emits visual light, visual light at various wavelengths can be emitted.
    Type: Application
    Filed: December 15, 2010
    Publication date: April 14, 2011
    Applicant: STANLEY ELECTRIC CO., LTD.
    Inventors: Tomofumi Yamamuro, Michihiro Sano, Naochika Horio, Hiroyuki Kato, Akio Ogawa, Hiroshi Kotani
  • Publication number: 20110084299
    Abstract: An LED light source can include protection members to protect bonding wires. The LED can include a substrate including electrode patterns, a sub mount substrate located on the substrate, at least one flip LED chip mounted on the sub mount substrate and a phosphor rein covering the LED chip. The bonding wires can connect each of the electrode patterns to conductor patterns connecting to electrodes of the LED chip. The protection members can be located so as to surround both sides of the bonding wires. In addition, because each height of the protection members is higher than each maximum height of the bonding wires and is lower than a height of the phosphor resin, the protection members can protect the bonding wires from external pressure while the light flux is not reduced. Thus, the disclosed subject matter can provide a reliable LED light source having a favorable light distribution.
    Type: Application
    Filed: October 12, 2010
    Publication date: April 14, 2011
    Inventors: HIROSHI KOTANI, Takahiko Nozaki
  • Publication number: 20100181550
    Abstract: A manufacture method for zinc oxide (ZnO) based semiconductor crystal includes providing a substrate having a Zn polarity plane; and reacting at least zinc (Zn) and oxygen (O) on the Zn polarity plane of said substrate to grow ZnO based semiconductor crystal on the Zn polarity plane of said substrate in a Zn rich condition. (a) An n-type ZnO buffer layer is formed on a Zn polarity plane of a substrate. (b) An n-type ZnO layer is formed on the surface of the n-type ZnO buffer layer. (c) An n-type ZnMgO layer is formed on the surface of the n-type ZnO layer. (d) A ZnO/ZnMgO quantum well layer is formed on the surface of the n-type ZnMgO layer, by alternately laminating a ZnO layer and a ZnMgO layer. @(e) A p-type ZnMgO layer is formed on the surface of the ZnO/ZnMgO quantum well layer. (f) A p-type ZnO layer is formed on the surface of the p-type ZnMgO layer. @(g) An electrode is formed on the n-type ZnO layer and p-type ZnO layer. The n-type ZnO layer is formed under a Zn rich condition at the step (b).
    Type: Application
    Filed: March 29, 2010
    Publication date: July 22, 2010
    Applicant: STANLEY ELECTRIC CO., LTD.
    Inventors: Hiroshi KOTANI, Michihiro SANO, Hiroyuki KATO, Akio OGAWA
  • Patent number: 7728347
    Abstract: A ZnO layer is provided which can obtain emission at a wavelength longer than blue (e.g., 420 nm) and has a novel structure. A transition energy narrower by 0.6 eV or larger than a band gap of ZnO can be obtained by doping S into a ZnO layer.
    Type: Grant
    Filed: April 23, 2009
    Date of Patent: June 1, 2010
    Assignee: Stanley Electric Co., Ltd.
    Inventors: Akio Ogawa, Michihiro Sano, Hiroyuki Kato, Hiroshi Kotani, Tomofumi Yamamuro
  • Publication number: 20090294758
    Abstract: A ZnO-containing semiconductor layer, doped with Se, has an emission peak wavelength in visual light and has a band gap equivalent to a band gap of ZnO.
    Type: Application
    Filed: August 13, 2009
    Publication date: December 3, 2009
    Applicant: STANLEY ELECTRIC CO., LTD.
    Inventors: Akio OGAWA, Michihiro Sano, Hiroyuki Kato, Naochika Horio, Hiroshi Kotani, Tomofumi Yamamuro
  • Publication number: 20090272972
    Abstract: A ZnO based semiconductor light emitting device includes: a first semiconductor layer containing ZnO1-x1Sx1; a second semiconductor layer formed above the first semiconductor layer and containing ZnO1-x2Sx2; and a third semiconductor layer formed above the second semiconductor layer and containing ZnO1-x3Sx3, wherein an S composition x1 of the first semiconductor layer, an S composition x2 of the second semiconductor layer and an S composition x3 of the third semiconductor layer are so selected that an energy of the second semiconductor layer at the lower end of a conduction band becomes lower than both energies of the first and third semiconductor layers at the lower end of the conduction bands, and that an energy of the second semiconductor layer at the upper end of a valence band becomes higher than both energies of the first and third semiconductor layers at the upper end of the valence bands.
    Type: Application
    Filed: July 13, 2009
    Publication date: November 5, 2009
    Applicant: STANLEY ELECTRIC CO., LTD.
    Inventors: Akio Ogawa, Michihiro Sano, Hiroyuki Kato, Hiroshi Kotani, Tomofumi Yamamuro
  • Publication number: 20090236598
    Abstract: A ZnO layer is provided which can obtain emission at a wavelength longer than blue (e.g., 420 nm) and has a novel structure. A transition energy narrower by 0.6 eV or larger than a band gap of ZnO can be obtained by doping S into a ZnO layer.
    Type: Application
    Filed: April 23, 2009
    Publication date: September 24, 2009
    Applicant: Stanley Electric Co., Ltd.
    Inventors: Akio OGAWA, Michihiro Sano, Hiroyuki Kato, Hiroshi Kotani, Tomofumi Yamamuro
  • Publication number: 20090206333
    Abstract: A ZnO based semiconductor device includes: a lamination structure including a first semiconductor layer containing ZnO based semiconductor of a first conductivity type and a second semiconductor layer containing ZnO based semiconductor of a second conductivity type opposite to the first conductivity type, formed above the first semiconductor layer and forming a pn junction together with the first semiconductor layer; and a Zn—Si—O layer containing compound of Zn, Si and O and covering a surface exposing the pn junction of the lamination structure.
    Type: Application
    Filed: February 17, 2009
    Publication date: August 20, 2009
    Applicant: Stanley Electric Co., Ltd.
    Inventors: Hiroshi Kotani, Michihiro Sano, Hiroyuki Kato, Naochika Horio, Akio Ogawa, Tomofumi Yamamuro
  • Publication number: 20090008660
    Abstract: A ZnO-containing semiconductor layer contains Se or S added to ZnO and has an emission peak wavelength of ultraviolet light and an emission peak wavelength of visual light. By combining the ZnO-containing semiconductor layer with phosphor or semiconductor which is excited by the emitted ultraviolet light and emits visual light, visual light at various wavelengths can be emitted.
    Type: Application
    Filed: July 1, 2008
    Publication date: January 8, 2009
    Applicant: Stanley Electric Co., Ltd.
    Inventors: Tomofumi Yamamuro, Michihiro Sano, Naochika Horio, Hiroyuki Kato, Akio Ogawa, Hiroshi Kotani
  • Publication number: 20070134842
    Abstract: A manufacture method for zinc oxide (ZnO) based semiconductor crystal includes providing a substrate having a Zn polarity plane; and reacting at least zinc (Zn) and oxygen (O) on the Zn polarity plane of said substrate to grow ZnO based semiconductor crystal on the Zn polarity plane of said substrate in a Zn rich condition. (a) An n-type ZnO buffer layer is formed on a Zn polarity plane of a substrate. (b) An n-type ZnO layer is formed on the surface of the n-type ZnO buffer layer. (c) An n-type ZnMgO layer is formed on the surface of the n-type ZnO layer. (d) A ZnO/ZnMgO quantum well layer is formed on the surface of the n-type ZnMgO layer, by alternately laminating a ZnO layer and a ZnMgO layer. @(e) A p-type ZnMgO layer is formed on the surface of the ZnO/ZnMgO quantum well layer. (f) A p-type ZnO layer is formed on the surface of the p-type ZnMgO layer. @(g) An electrode is formed on the n-type ZnO layer and p-type ZnO layer. The n-type ZnO layer is formed under a Zn rich condition at the step (b).
    Type: Application
    Filed: October 31, 2006
    Publication date: June 14, 2007
    Inventors: Hiroshi Kotani, Michihiro Sano, Hiroyuki Kato, Akio Ogawa
  • Patent number: 7221003
    Abstract: A light-emitting device can include a blue LED chip that is covered in a sealing resin composed of a filling resin mixed with a wavelength conversion material, such as a yellow fluorescent material. Light from the blue LED chip is mixed with a light from the yellow fluorescent material to obtain white light emission having a mixed color. The sealing resin has a light emission surface, which can be symmetrical about the normal line passing through the center of the blue LED chip. An optical multi-layered film including layered high- and low-refractive index films can be provided on the light emission surface.
    Type: Grant
    Filed: March 16, 2006
    Date of Patent: May 22, 2007
    Assignee: Stanley Electric Co., Ltd.
    Inventors: Kazuhiko Ueno, Hiroshi Kotani