Patents by Inventor Hirotsugu Takeuchi

Hirotsugu Takeuchi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190240848
    Abstract: A germ-free glove box includes: a housing in which a germ-free space is formed, the housing including a connector to which a container housing an object is connected; and a glove provided at a front plate of the housing to allow an operating personnel to perform an operation in the germ-free space from the outside of the housing. In this germ-free glove box, the connector is provided on an upper plate of the housing. In the germ-free glove box outside spaces beside the box are effectively utilized, and a large working space is secured at around the bottom surface of a germ-free space.
    Type: Application
    Filed: July 21, 2017
    Publication date: August 8, 2019
    Applicant: SINFONIA TECHNOLOGY CO., LTD.
    Inventors: Haruki TAKEUCHI, Takayuki YAMADA, Toru SAEKI, Takumi ONISHI, Hiroyuki UDA, Hisashi GOMI, Toshimitsu FUJI, Hirotsugu SHIRAIWA, Norihiko YAMAMOTO
  • Publication number: 20190160093
    Abstract: Provided is an inhalation gas device for a therapy of a disease accompanied by epileptiform discharges comprising a medical gas bottle, and a medical inhalation gas device connected to the medical gas bottle, the inhalation gas device for a therapy of a disease accompanied by epileptiform discharges including the following 1) and 2): 1) a therapeutic agent for a disease accompanied by epileptiform discharges containing carbon dioxide as an active ingredient being filled in the medical gas bottle; and 2) the medical inhalation gas device being provided with a gas inhalation mask.
    Type: Application
    Filed: February 1, 2019
    Publication date: May 30, 2019
    Inventors: Mamoru Ouchida, Iori Ohmori, Yuko Kaida, Hirotsugu Takeuchi, Mitsuhiro Ogawa, Toshie Furuumi
  • Patent number: 8991201
    Abstract: An ejector cycle system with a refrigerant cycle through which refrigerant flows includes an ejector disposed downstream of a radiator, a first evaporator that evaporates refrigerant flowing out of the ejector, a throttling unit located in a branch passage and depressurizes refrigerant to adjust a flow rate of refrigerant, and a second evaporator located downstream of the throttling unit. In the ejector cycle system, a flow ratio adjusting means adjusts a flow ratio between a first refrigerant flow amount depressurized and expanded in a nozzle portion of the ejector and a second refrigerant flow amount drawn into a refrigerant suction port of the ejector, based on a physical quantity related to at least one of a state of refrigerant in the refrigerant cycle, a temperature of a space to be cooled by the first and second evaporators, and an ambient temperature of the space.
    Type: Grant
    Filed: August 19, 2010
    Date of Patent: March 31, 2015
    Assignee: Denso Corporation
    Inventors: Makoto Ikegami, Hiroshi Oshitani, Etsuhisa Yamada, Naohisa Ishizaka, Hirotsugu Takeuchi, Takeyuki Sugiura, Takuo Maehara
  • Patent number: 8534093
    Abstract: A unit for an ejector-type refrigeration cycle includes an ejector, first and second evaporators connected in parallel to a downstream side of the ejector and configured to evaporate the refrigerant discharged from the outlet of the ejector, and a refrigerant distributor configured to distribute the refrigerant discharged from an outlet of the ejector to a side of the first evaporator and a side of the second evaporator. The ejector draws refrigerant from a refrigerant suction port by a high-velocity refrigerant flow jetted from a nozzle portion, and mixes the refrigerant injected from the nozzle portion with the refrigerant drawn from the refrigerant suction port so as to discharge the mixed refrigerant from the outlet of the ejector. The ejector and the refrigerant distributor are connected to each other such that the refrigerant discharged from the outlet of the ejector directly flows into the refrigerant distributor.
    Type: Grant
    Filed: February 26, 2008
    Date of Patent: September 17, 2013
    Assignee: Denso Corporation
    Inventors: Takayuki Sugiura, Hirotsugu Takeuchi
  • Patent number: 8429931
    Abstract: An ejector refrigerant cycle device includes a radiator for radiating heat of high-temperature and high-pressure refrigerant discharged from a compressor, a branch portion for branching a flow of refrigerant on a downstream side of the radiator into a first stream and a second stream, an ejector that includes a nozzle portion for decompressing and expending refrigerant of the first stream from the branch portion, a decompression portion for decompressing and expanding refrigerant of the second stream from the branch portion, and an evaporator for evaporating refrigerant on a downstream side of the decompression portion. The evaporator has a refrigerant outlet coupled to the refrigerant suction port of the ejector. Furthermore, a refrigerant radiating portion is provided for radiating heat of refrigerant while the decompression portion decompresses and expands refrigerant. For example, the refrigerant radiating portion is provided in an inner heat exchanger.
    Type: Grant
    Filed: February 9, 2010
    Date of Patent: April 30, 2013
    Assignee: Denso Corporation
    Inventors: Makoto Ikegami, Hirotsugu Takeuchi, Etsuhisa Yamada, Haruyuki Nishijima, Hideya Matsui
  • Patent number: 8186180
    Abstract: An ejector-type refrigerant cycle device includes: a first evaporator 15 that evaporates refrigerant flowing out of an ejector 14; a branch passage 17 that branches a flow of refrigerant between a radiator 13 and the ejector 14 and guides this flow of refrigerant to a vapor-phase refrigerant suction port 14c of the ejector 14; a throttling mechanism 18 disposed in the branch passage 17; and a second evaporator 19 disposed downstream of the throttling mechanism 18 with respect to the flow of refrigerant. The throttling mechanism 18 is constructed to be provided with a fully opening function, and to fully open the branch passage 17 when the second evaporator 19 is defrosted. Therefore, in an ejector-type refrigerant cycle device including multiple evaporators, the function of defrosting the evaporators can be carried out with a simple construction.
    Type: Grant
    Filed: June 2, 2010
    Date of Patent: May 29, 2012
    Assignee: Denso Corporation
    Inventors: Hiroshi Oshitani, Hirotsugu Takeuchi, Etsuhisa Yamada, Haruyuki Nishijima
  • Patent number: 8047018
    Abstract: An ejector cycle system with a refrigerant cycle through which refrigerant flows includes an ejector disposed downstream of a radiator, a first evaporator located to evaporate refrigerant flowing out of the ejector, a branch passage branched from a branch portion between the radiator and a nozzle portion of the ejector and coupled to a refrigerant suction port of the ejector, a throttling unit located in the branch passage, and a second evaporator located downstream of the throttling unit to evaporate refrigerant. In the ejector cycle system, a variable throttling device is located in a refrigerant passage between a refrigerant outlet of the radiator and the branch portion to decompress the refrigerant flowing out of the radiator.
    Type: Grant
    Filed: December 8, 2008
    Date of Patent: November 1, 2011
    Assignee: Denso Corporation
    Inventors: Makoto Ikegami, Hiroshi Oshitani, Etsuhisa Yamada, Naohisa Ishizaka, Hirotsugu Takeuchi, Takeyuki Sugiura, Takuo Maehara
  • Patent number: 7987685
    Abstract: A refrigerant cycle device includes a branch portion for branching a flow of refrigerant discharged from a compressor, a first radiator for radiating one high-temperature and high-pressure refrigerant branched at the branch portion, an ejector including a nozzle portion for decompressing refrigerant on a downstream side of the first radiator, a second radiator for radiating the other high-temperature and high-pressure refrigerant branched at the branch portion, a throttle device for decompressing refrigerant on a downstream side of the second radiator, and a suction side evaporator for evaporating refrigerant downstream of the throttle device and for allowing the refrigerant to flow to an upstream side of a refrigerant suction port of the ejector. Furthermore, the first and second radiators are disposed downstream of the branch portion such that a heat radiation amount of refrigerant in the first radiator is smaller than that in the second radiator.
    Type: Grant
    Filed: August 6, 2007
    Date of Patent: August 2, 2011
    Assignee: Denso Corporation
    Inventors: Hiroshi Oshitani, Hirotsugu Takeuchi, Yoshiaki Takano, Mika Gocho
  • Publication number: 20110167851
    Abstract: A refrigerant cycle device having an ejector includes a first evaporator for evaporating refrigerant flowing out of the ejector, a first passage portion for guiding refrigerant to a refrigerant suction port of the ejector, a throttle unit located in the first passage portion, a second evaporator located in the first passage portion downstream of the throttle unit, a bypass passage portion for guiding hot gas refrigerant from a compressor into the second evaporator, a bypass opening and closing unit provided in the bypass passage portion. Furthermore, a second passage portion is branched from the bypass passage portion downstream of the bypass opening and closing unit, and a flow control unit is provided in the second passage portion to prevent a flow of refrigerant from the first evaporator to the second evaporator through the second passage portion. Therefore, defrosting of both the first and second evaporators can be suitably performed.
    Type: Application
    Filed: March 23, 2011
    Publication date: July 14, 2011
    Applicant: DENSO CORPORATION
    Inventors: Haruyuki Nishijima, Etsuhisa Yamada, Hideya Matsui, Hirotsugu Takeuchi, Gentarou Oomura, Ryoko Fujiwara
  • Patent number: 7870758
    Abstract: In an ejector cycle with an ejector including a nozzle for decompressing refrigerant, a control unit controls an air blowing amount of an evaporator fan so that a flow speed of refrigerant flowing in an evaporator becomes in a predetermined flow speed range. Therefore, it can prevent a large amount of lubrication oil from staying in the evaporator, and thereby the lubrication oil can sufficiently returns to a compressor. For example, the control unit includes a determining means for determining the predetermined flow speed range based on at least one of an atmosphere temperature of a condenser, a temperature of air supplied to the evaporator and a flow amount of refrigerant discharged from the compressor.
    Type: Grant
    Filed: June 29, 2004
    Date of Patent: January 18, 2011
    Assignee: Denso Corporation
    Inventors: Haruyuki Nishijima, Hisatsugu Matsunaga, Tooru Ikemoto, Hirotsugu Takeuchi
  • Publication number: 20100319393
    Abstract: An ejector cycle system with a refrigerant cycle through which refrigerant flows includes an ejector disposed downstream of a radiator, a first evaporator that evaporates refrigerant flowing out of the ejector, a throttling unit located in a branch passage and depressurizes refrigerant to adjust a flow rate of refrigerant, and a second evaporator located downstream of the throttling unit. In the ejector cycle system, a flow ratio adjusting means adjusts a flow ratio between a first refrigerant flow amount depressurized and expanded in a nozzle portion of the ejector and a second refrigerant flow amount drawn into a refrigerant suction port of the ejector, based on a physical quantity related to at least one of a state of refrigerant in the refrigerant cycle, a temperature of a space to be cooled by the first and second evaporators, and an ambient temperature of the space.
    Type: Application
    Filed: August 19, 2010
    Publication date: December 23, 2010
    Applicant: DENSO CORPORATION
    Inventors: Makoto Ikegami, Hiroshi Oshitani, Etsuhisa Yamada, Naohisa Ishizaka, Hirotsugu Takeuchi, Takeyuki Sugiura, Takuo Maehara
  • Patent number: 7841193
    Abstract: A refrigerant flow-amount controlling device for an ejector refrigerant cycle system includes an ejector having a nozzle for decompressing refrigerant of a first stream of a branch portion, a first evaporator for evaporating refrigerant flowing out of the ejector, a throttle member for decompressing refrigerant of a second stream of the branch portion, a second evaporator disposed downstream of the throttle member and upstream of a refrigerant suction portion of the ejector, and an adjusting mechanism having a temperature-sensitive deformation member that is deformed in accordance with a variation in a refrigerant temperature of the cycle system to adjust one refrigerant passage area of the nozzle portion and the throttle means. The adjusting mechanism can be provided to adjust a flow ratio of a refrigerant amount decompressed by the nozzle portion of the ejector and a refrigerant amount drawn into the refrigerant suction port of the ejector.
    Type: Grant
    Filed: February 15, 2007
    Date of Patent: November 30, 2010
    Assignee: Denso Corporation
    Inventors: Shin Nishida, Takayuki Sugiura, Hirotsugu Takeuchi
  • Patent number: 7823401
    Abstract: In a refrigerant cycle device having an ejector, a branch portion for branching a flow of refrigerant flowing out of the ejector into at least a first refrigerant stream and a second refrigerant stream is located. A first evaporator for evaporating the refrigerant of the first refrigerant stream is located to allow the refrigerant to flow to a suction side of the compressor, and a second evaporator for evaporating the refrigerant of the second refrigerant stream is located to allow the refrigerant to flow to an upstream side of a refrigerant suction port of the ejector. In addition, the branch portion is located to maintain a dynamic pressure of the refrigerant flowing out of the ejector, and the second evaporator is connected to the branch portion in a range where the dynamic pressure can be applied to an inside of the second evaporator.
    Type: Grant
    Filed: October 25, 2007
    Date of Patent: November 2, 2010
    Assignee: Denso Corporation
    Inventors: Hirotsugu Takeuchi, Makoto Ikegami, Haruyuki Nishijima
  • Publication number: 20100257893
    Abstract: An ejector-type refrigerant cycle device includes: a first evaporator 15 that evaporates refrigerant flowing out of an ejector 14; a branch passage 17 that branches a flow of refrigerant between a radiator 13 and the ejector 14 and guides this flow of refrigerant to a vapor-phase refrigerant suction port 14c of the ejector 14; a throttling mechanism 18 disposed in the branch passage 17; and a second evaporator 19 disposed downstream of the throttling mechanism 18 with respect to the flow of refrigerant. The throttling mechanism 18 is constructed to be provided with a fully opening function, and to fully open the branch passage 17 when the second evaporator 19 is defrosted. Therefore, in an ejector-type refrigerant cycle device including multiple evaporators, the function of defrosting the evaporators can be carried out with a simple construction.
    Type: Application
    Filed: June 2, 2010
    Publication date: October 14, 2010
    Applicant: DENSO CORPORATION
    Inventors: Hiroshi Oshitani, Hirotsugu Takeuchi, Etsuhisa Yamada, Haruyuki Nishijima
  • Patent number: 7779647
    Abstract: An ejector cycle device includes a compressor that draws and compresses refrigerant, a radiator that radiates heat of high-pressure refrigerant discharged from the compressor, an ejector, a branch passage branched from a refrigerant passage between the radiator and a nozzle portion of the ejector and coupled to a suction port of the ejector, a throttle unit that is arranged in the branch passage and decompresses refrigerant, and an evaporator that is arranged on a downstream side of refrigerant flow of the throttle unit in the branch passage and evaporates refrigerant. Accordingly, even when a suction performance of the ejector is lowered, refrigerant can flow through the evaporator.
    Type: Grant
    Filed: May 23, 2006
    Date of Patent: August 24, 2010
    Assignee: Denso Corporation
    Inventors: Hirotsugu Takeuchi, Mika Saito, Hiroshi Oshitani, Shin Nishida, Takayuki Sugiura
  • Patent number: 7770412
    Abstract: An integrated unit for a refrigerant cycle device includes an ejector having a nozzle part for decompressing refrigerant, and an evaporator located to evaporate the refrigerant to be drawn into a refrigerant suction port of the ejector or the refrigerant discharged from an outlet of the ejector. The evaporator includes a plurality of tubes defining refrigerant passages through which refrigerant flows, a tank that is disposed at one end side of the tubes for distributing refrigerant into the tubes and for collecting the refrigerant from the tubes. The tank extends in a tank longitudinal direction that is parallel to an arrangement direction of the tubes, and is provided with an end portion in the tank longitudinal direction. Furthermore, the end portion has a hole portion for inserting the ejector, and the ejector is inserted into an inner space of the tank from the hole portion.
    Type: Grant
    Filed: January 17, 2007
    Date of Patent: August 10, 2010
    Assignee: Denso Corporation
    Inventors: Naohisa Ishizaka, Thuya Aung, Hiroshi Oshitani, Yoshiaki Takano, Mika Gocho, Hirotsugu Takeuchi, Yoshiyuki Okamoto
  • Patent number: 7757514
    Abstract: An ejector-type refrigerant cycle device includes: a first evaporator 15 that evaporates refrigerant flowing out of an ejector 14; a branch passage 17 that branches a flow of refrigerant between a radiator 13 and the ejector 14 and guides this flow of refrigerant to a vapor-phase refrigerant suction port 14c of the ejector 14; a throttling mechanism 18 disposed in the branch passage 17; and a second evaporator 19 disposed downstream of the throttling mechanism 18 with respect to the flow of refrigerant. The throttling mechanism 18 is constructed to be provided with a fully opening function, and to fully open the branch passage 17 when the second evaporator 19 is defrosted. Therefore, in an ejector-type refrigerant cycle device including multiple evaporators, the function of defrosting the evaporators can be carried out with a simple construction.
    Type: Grant
    Filed: September 22, 2005
    Date of Patent: July 20, 2010
    Assignee: Denso Corporation
    Inventors: Hiroshi Oshitani, Hirotsugu Takeuchi, Etsuhisa Yamada, Haruyuki Nishijima
  • Publication number: 20100139315
    Abstract: An ejector refrigerant cycle device includes a radiator for radiating heat of high-temperature and high-pressure refrigerant discharged from a compressor, a branch portion for branching a flow of refrigerant on a downstream side of the radiator into a first stream and a second stream, an ejector that includes a nozzle portion for decompressing and expending refrigerant of the first stream from the branch portion, a decompression portion for decompressing and expanding refrigerant of the second stream from the branch portion, and an evaporator for evaporating refrigerant on a downstream side of the decompression portion. The evaporator has a refrigerant outlet coupled to the refrigerant suction port of the ejector. Furthermore, a refrigerant radiating portion is provided for radiating heat of refrigerant while the decompression portion decompresses and expands refrigerant. For example, the refrigerant radiating portion is provided in an inner heat exchanger.
    Type: Application
    Filed: February 9, 2010
    Publication date: June 10, 2010
    Inventors: Makoto Ikegami, Hirotsugu Takeuchi, Etsuhisa Yamada, Haruyuki Nishijima, Hideya Matsui
  • Patent number: 7726150
    Abstract: An ejector cycle device includes a compressor, a refrigerant radiator, an ejector having a nozzle part and a refrigerant suction port, and a branch passage for introducing refrigerant branched on an upstream side of the nozzle part of the ejector in a refrigerant flow into the refrigerant suction port. Furthermore, a first evaporator is arranged on a downstream side of the ejector in the refrigerant flow, and a second evaporator is arranged in the branch passage. In addition, in the ejector cycle device, a refrigerant flow rate ratio (?) of a flow rate of refrigerant flowing in the second evaporator to a flow rate of refrigerant discharged from the compressor is set within a range from 0.07 or more to 0.93 or less.
    Type: Grant
    Filed: August 9, 2006
    Date of Patent: June 1, 2010
    Assignee: Denso Corporation
    Inventors: Haruyuki Nishijima, Hirotsugu Takeuchi, Etsuhisa Yamada, Makoto Ikegami, Hiroshi Oshitani
  • Patent number: 7707849
    Abstract: A first evaporator connected to an outlet side of an ejector, a second evaporator connected to a refrigerant suction port of the ejector, a throttle mechanism arranged on an inlet side of a refrigerant flow of the second evaporator and for reducing the pressure of the refrigerant flow are provided. Furthermore, the ejector, the first evaporator, the second evaporator and the throttle mechanism are assembled integrally with each other to construct an integrated unit having one refrigerant inlet and one refrigerant outlet. Hence, mounting performance of an ejector type refrigeration cycle can be improved.
    Type: Grant
    Filed: April 4, 2006
    Date of Patent: May 4, 2010
    Assignee: Denso Corporation
    Inventors: Naohisa Ishizaka, Hirotsugu Takeuchi, Yoshiaki Takano, Mika Gocho, Hiroshi Oshitani, Haruyuki Nishijima, Makoto Ikegami, Naoki Yokoyama, Etsuhisa Yamada