Patents by Inventor Hiroyuki Ode

Hiroyuki Ode has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130328168
    Abstract: A method for forming a capacitor stack is described. In some embodiments of the present invention, a first dielectric material is formed above a first electrode material. The first electrode material is rigid and has good mechanical strength and serves as a robust frame for the capacitor stack. The first dielectric material is sufficiently thin (<2nm) or highly doped so that it remains amorphous after subsequent anneal treatments. A second dielectric material is formed above the first dielectric material. The second dielectric material is sufficiently thick (>3nm) or lightly doped or non-doped so that it crystallizes after subsequent anneal treatments. A second electrode material is formed adjacent to the second dielectric material. The second electrode material has a high work function and a crystal structure that serves to promote the formation of the high k-value crystal structure of the second dielectric material.
    Type: Application
    Filed: January 9, 2013
    Publication date: December 12, 2013
    Applicant: INTERMOLECULAR INC.
    Inventors: Sandra G. Malhotra, Wim Y. Deweerd, Hiroyuki Ode
  • Publication number: 20130330902
    Abstract: A metal oxide first electrode material for a MIM DRAM capacitor is formed wherein the first and/or second electrode materials or structures contain layers having one or more dopants up to a total doping concentration that will not prevent the electrode materials from crystallizing during a subsequent anneal step. Advantageously, the electrode doped with one or more of the dopants has a work function greater than about 5.0 eV. Advantageously, the electrode doped with one or more of the dopants has a resistivity less than about 1000 ?? cm. Advantageously, the electrode materials are conductive molybdenum oxide.
    Type: Application
    Filed: June 12, 2012
    Publication date: December 12, 2013
    Applicants: Elpida Memory, Inc., Intermolecular, Inc.
    Inventors: Hanhong Chen, Wim Deweerd, Edward L. Haywood, Sandra G. Malhotra, Hiroyuki Ode
  • Publication number: 20130320495
    Abstract: A method for forming a capacitor stack is described. In some embodiments of the present invention, a first electrode structure is comprised of multiple materials. A first material is formed above the substrate. A portion of the first material is etched. A second material is formed above the first material. A portion of the second material is etched. Optionally, the first electrode structure receives an anneal treatment. A dielectric material is formed above the first electrode structure. Optionally, the dielectric material receives an anneal treatment. A second electrode material is formed above the dielectric material. Typically, the capacitor stack receives an anneal treatment.
    Type: Application
    Filed: January 10, 2013
    Publication date: December 5, 2013
    Applicant: INTERMOLECULAR, INC.
    Inventors: Sandra G. Malhotra, Hanhong Chen, Wim Y. Deweerd, Edward L. Haywood, Hiroyuki Ode, Gerald Richardson
  • Patent number: 8581319
    Abstract: A method for fabricating a dynamic random access memory (DRAM) capacitor includes forming a first electrode layer, forming a catalytic layer on the first electrode layer, optionally annealing the catalytic layer, forming a dielectric layer on the catalytic layer, optionally annealing the dielectric layer, forming a second electrode layer on the dielectric layer, and optionally annealing the capacitor stack. Advantageously, the electrode layers are TiN, the catalytic layer is MoO2?x where x is between 0 and 2, and the physical thickness of the catalytic layer is between about 0.5 nm and about 10 nm, and the dielectric layer is ZrO2.
    Type: Grant
    Filed: January 10, 2013
    Date of Patent: November 12, 2013
    Assignee: Intermolecular, Inc.
    Inventors: Hanhong Chen, Sandra G. Malhotra, Hiroyuki Ode, Xiangxin Rui
  • Patent number: 8581318
    Abstract: A metal oxide first electrode material for a MIM DRAM capacitor is formed wherein the first and/or second electrode materials or structures contain layers having one or more dopants up to a total doping concentration that will not prevent the electrode materials from crystallizing during a subsequent anneal step. Advantageously, the electrode doped with one or more of the dopants has a work function greater than about 5.0 eV. Advantageously, the electrode doped with one or more of the dopants has a resistivity less than about 1000 ??cm. Advantageously, the electrode materials are conductive molybdenum oxide.
    Type: Grant
    Filed: January 9, 2013
    Date of Patent: November 12, 2013
    Assignee: Intermolecular, Inc.
    Inventors: Hanhong Chen, Wim Deweerd, Edward L. Haywood, Sandra G. Malhotra, Hiroyuki Ode
  • Patent number: 8574998
    Abstract: A method for reducing the leakage current in DRAM MIM capacitors comprises forming a multi-layer dielectric stack from an amorphous highly doped material, an amorphous high band gap material, and a lightly or non-doped material. The highly doped material will remain amorphous (<30% crystalline) after an anneal step. The high band gap material will remain amorphous (<30% crystalline) after an anneal step. The lightly or non-doped material will become crystalline (?30% crystalline) after an anneal step. The high band gap material is formed between the amorphous highly doped material and the lightly or non-doped material and provides an intermediate barrier to conduction through the multi-layer dielectric stack.
    Type: Grant
    Filed: December 5, 2011
    Date of Patent: November 5, 2013
    Assignees: Intermolecular, Inc., Elpida Memory, Inc.
    Inventors: Sandra Malhotra, Kenichi Koyanagi, Hiroyuki Ode, Xiangxin Rui, Takashi Arao, Naonori Fujiwara
  • Patent number: 8575671
    Abstract: A bilayer second electrode for a MIM DRAM capacitor is formed wherein the layer of the electrode that is in contact with the dielectric layer (i.e. bottom layer) has a composition that is resistant to oxidation during subsequent anneal steps and have rutile templating capability. Examples include SnO2 and RuO2. The capacitor stack including the bottom layer is subjected to a PMA treatment to reduce the oxygen vacancies in the dielectric layer and reduce the interface states at the dielectric/second electrode interface. The other component of the bilayer (i.e. top layer) is a high work function, high conductivity metal or conductive metal compound.
    Type: Grant
    Filed: December 3, 2012
    Date of Patent: November 5, 2013
    Assignee: Intermolecular, Inc.
    Inventors: Hanhong Chen, Hiroyuki Ode
  • Patent number: 8574983
    Abstract: A method for fabricating a dynamic random access memory (DRAM) capacitor includes forming a first electrode film. The first electrode film comprises a conductive binary metal compound and a dopant. The dopant may have a uniform or non-uniform concentration within the first electrode film. A high-k dielectric film is formed over the first electrode film. A second electrode film is formed over the dielectric film. The second electrode film comprises a conductive binary metal compound and a dopant. The dopant may have a uniform or non-uniform concentration within the second electrode film. The dopants and their distribution are chosen so that the crystal structure of the surface of the electrode is not degraded if the electrode is to be used as a templating structure for subsequent layer formation. Additionally, the dopants and their distribution are chosen so that the work function of the electrodes is not degraded.
    Type: Grant
    Filed: May 13, 2011
    Date of Patent: November 5, 2013
    Assignees: Intermolecular, Inc., Elpida Memory, Inc.
    Inventors: Karthik Ramani, Wim Deweerd, Hiroyuki Ode
  • Patent number: 8574997
    Abstract: A method for fabricating a dynamic random access memory (DRAM) capacitor includes forming a first electrode layer, forming a catalytic layer on the first electrode layer, optionally annealing the catalytic layer, forming a dielectric layer on the catalytic layer, optionally annealing the dielectric layer, forming a second electrode layer on the dielectric layer, and optionally annealing the capacitor stack. Advantageously, the electrode layers are TiN, the catalytic layer is MoO2?x where x is between 0 and 2, and the physical thickness of the catalytic layer is between about 0.5 nm and about 10 nm, and the dielectric layer is ZrO2.
    Type: Grant
    Filed: June 6, 2011
    Date of Patent: November 5, 2013
    Assignees: Intermolecular, Inc., Elpida Memory, Inc.
    Inventors: Hanhong Chen, Sandra Malhotra, Hiroyuki Ode, Xiangxin Rui
  • Patent number: 8574999
    Abstract: A method for forming a DRAM MIM capacitor stack having low leakage current involves the use of a first electrode that serves as a template for promoting the high k phase of a subsequently deposited dielectric layer. The high k dielectric layer comprises a doped material that can be crystallized after a subsequent annealing treatment. An amorphous blocking is formed on the dielectric layer. The thickness of the blocking layer is chosen such that the blocking layer remains amorphous after a subsequent annealing treatment. A second electrode layer compatible with the blocking layer is formed on the blocking layer.
    Type: Grant
    Filed: January 10, 2013
    Date of Patent: November 5, 2013
    Assignees: Intermolecular, Inc., Elpida Memory, Inc.
    Inventors: Sandra G. Malhotra, Hanhong Chen, Wim Y. Deweerd, Hiroyuki Ode
  • Patent number: 8569818
    Abstract: A method for forming a DRAM MIM capacitor stack having low leakage current involves the use of a first electrode that serves as a template for promoting the high k phase of a subsequently deposited dielectric layer. The high k dielectric layer comprises a doped material that can be crystallized after a subsequent annealing treatment. An amorphous blocking is formed on the dielectric layer. The thickness of the blocking layer is chosen such that the blocking layer remains amorphous after a subsequent annealing treatment. A second electrode layer compatible with the blocking layer is formed on the blocking layer.
    Type: Grant
    Filed: October 23, 2012
    Date of Patent: October 29, 2013
    Assignee: Intermolecular, Inc.
    Inventors: Sandra G. Malhotra, Hanhong Chen, Wim Y. Deweerd, Hiroyuki Ode
  • Patent number: 8569819
    Abstract: A metal oxide first electrode layer for a MIM DRAM capacitor is formed wherein the first and/or second electrode layers contain one or more dopants up to a total doping concentration that will not prevent the electrode layers from crystallizing during a subsequent anneal step. One or more of the dopants has a work function greater than about 5.0 eV. One or more of the dopants has a resistivity less than about 1000 ??cm. Advantageously, the electrode layers are conductive molybdenum oxide.
    Type: Grant
    Filed: June 11, 2013
    Date of Patent: October 29, 2013
    Assignees: Intermolecular, Inc., Elpida Memory, Inc.
    Inventors: Xiangxin Rui, Hiroyuki Ode
  • Patent number: 8563392
    Abstract: In some embodiments of the present invention, methods are developed wherein a gas flow of an electron donating compound (EDC) is introduced in sequence with a precursor pulse and alters the deposition of the precursor material. In some embodiments, the EDC pulse is introduced sequentially with the precursor pulse with a purge step used to remove the non-adsorbed EDC from the process chamber before the precursor is introduced. In some embodiments, the EDC pulse is introduced using a vapor draw technique or a bubbler technique. In some embodiments, the EDC pulse is introduced in the same gas distribution manifold as the precursor pulse. In some embodiments, the EDC pulse is introduced in a separate gas distribution manifold from the precursor pulse.
    Type: Grant
    Filed: December 5, 2011
    Date of Patent: October 22, 2013
    Assignees: Intermolecular, Inc., Elpida Memory, Inc.
    Inventors: Sandra Malhotra, Wim Deweerd, Edward Haywood, Hiroyuki Ode
  • Publication number: 20130270673
    Abstract: A metal oxide first electrode layer for a MIM DRAM capacitor is formed wherein the first and/or second electrode layers contain one or more dopants up to a total doping concentration that will not prevent the electrode layers from crystallizing during a subsequent anneal step. One or more of the dopants has a work function greater than about 5.0 eV. One or more of the dopants has a resistivity less than about 1000 ?? cm. Advantageously, the electrode layers are conductive molybdenum oxide.
    Type: Application
    Filed: June 11, 2013
    Publication date: October 17, 2013
    Inventors: Xiangxin Rui, Hiroyuki Ode
  • Patent number: 8546236
    Abstract: A method for fabricating a DRAM capacitor stack is described wherein the dielectric material is a multi-layer stack formed from a highly-doped material combined with a lightly or non-doped material. The highly-doped material remains amorphous with a crystalline content of less than 30% after an annealing step. The lightly or non-doped material becomes crystalline with a crystalline content of equal to or greater than 30% after an annealing step. The dielectric multi-layer stack maintains a high k-value while minimizing the leakage current and the EOT value.
    Type: Grant
    Filed: January 10, 2013
    Date of Patent: October 1, 2013
    Assignee: Intermolecular, Inc.
    Inventors: Sandra G. Malhotra, Hanhong Chen, Wim Deweerd, Mitsuhiro Horikawa, Kenichi Koyanagi, Hiroyuki Ode, Xiangxin Rui
  • Patent number: 8542523
    Abstract: A method for fabricating a dynamic random access memory (DRAM) capacitor includes forming a first electrode film. The first electrode film comprises a conductive binary metal compound and a dopant. The dopant may have a uniform or non-uniform concentration within the first electrode film. A high-k dielectric film is formed over the first electrode film. A second electrode film is formed over the dielectric film. The second electrode film comprises a conductive binary metal compound and a dopant. The dopant may have a uniform or non-uniform concentration within the second electrode film. The dopants and their distribution are chosen so that the crystal structure of the surface of the electrode is not degraded if the electrode is to be used as a templating structure for subsequent layer formation. Additionally, the dopants and their distribution are chosen so that the work function of the electrodes is not degraded.
    Type: Grant
    Filed: January 10, 2013
    Date of Patent: September 24, 2013
    Assignees: Intermolecular, Inc., Elpida Memory, Inc.
    Inventors: Karthik Ramani, Wim Y. Deweerd, Hiroyuki Ode
  • Patent number: 8541282
    Abstract: A method for forming a DRAM MIM capacitor stack having low leakage current involves the use of a first electrode that serves as a template for promoting the high k phase of a subsequently deposited dielectric layer. The high k dielectric layer comprises a doped material that can be crystallized after a subsequent annealing treatment. An amorphous blocking is formed on the dielectric layer. The thickness of the blocking layer is chosen such that the blocking layer remains amorphous after a subsequent annealing treatment. A second electrode layer compatible with the blocking layer is formed on the blocking layer.
    Type: Grant
    Filed: November 7, 2011
    Date of Patent: September 24, 2013
    Assignees: Intermolecular, Inc., Elpida Memory, Inc.
    Inventors: Sandra Malhotra, Hanhong Chen, Wim Deweerd, Hiroyuki Ode
  • Patent number: 8541868
    Abstract: A method for forming a DRAM MIM capacitor stack having low leakage current involves the use of a first electrode that serves as a template for promoting the high k phase of a subsequently deposited dielectric layer. The high k dielectric layer comprises a doped material that can be crystallized after a subsequent annealing treatment. A metal oxide second electrode layer is formed above the dielectric layer. The metal oxide second electrode layer has a crystal structure that is compatible with the crystal structure of the dielectric layer. Optionally, a second electrode bulk layer is formed above the metal oxide second electrode layer.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: September 24, 2013
    Assignees: Intermolecular, Inc., Elpida Memory, Inc.
    Inventors: Sandra G. Malhotra, Hanhong Chen, Wim Y. Deweerd, Hiroyuki Ode
  • Patent number: 8541283
    Abstract: A method for fabricating a DRAM capacitor stack is described wherein the dielectric material is a multi-layer stack formed from a highly-doped material combined with a lightly or non-doped material. The highly-doped material remains amorphous with a crystalline content of less than 30% after an annealing step. The lightly or non-doped material becomes crystalline with a crystalline content of equal to or greater than 30% after an annealing step. The dielectric multi-layer stack maintains a high k-value while minimizing the leakage current and the EOT value.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: September 24, 2013
    Assignees: Intermolecular, Inc., Elpida Memory, Inc.
    Inventors: Sandra G. Malhotra, Hanhong Chen, Wim Y. Deweerd, Mitsuhiro Horikawa, Kenichi Koyanagi, Hiroyuki Ode, Xiangxin Rui
  • Patent number: 8530348
    Abstract: A method for forming a capacitor stack is described. In some embodiments of the present invention, a first electrode structure is comprised of multiple materials. A first material is formed above the substrate. A portion of the first material is etched. A second material is formed above the first material. A portion of the second material is etched. Optionally, the first electrode structure receives an anneal treatment. A dielectric material is formed above the first electrode structure. Optionally, the dielectric material receives an anneal treatment. A second electrode material is formed above the dielectric material. Typically, the capacitor stack receives an anneal treatment.
    Type: Grant
    Filed: May 29, 2012
    Date of Patent: September 10, 2013
    Assignees: Intermolecular, Inc., Elpida Memory, Inc.
    Inventors: Sandra G. Malhotra, Hanhong Chen, Wim Y. Deweerd, Edward L. Haywood, Hiroyuki Ode, Gerald Richardson