Patents by Inventor Hiroyuki Toya

Hiroyuki Toya has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240105935
    Abstract: Provided are a cathode active material having a suitable particle size and high uniformity, and a nickel composite hydroxide as a precursor of the cathode active material. When obtaining nickel composite hydroxide by a crystallization reaction, nucleation is performed by controlling a nucleation aqueous solution that includes a metal compound, which includes nickel, and an ammonium ion donor so that the pH value at a standard solution temperature of 25° C. becomes 12.0 to 14.0, after which, particles are grown by controlling a particle growth aqueous solution that includes the formed nuclei so that the pH value at a standard solution temperature of 25° C. becomes 10.5 to 12.0, and so that the pH value is lower than the pH value during nucleation.
    Type: Application
    Filed: November 30, 2023
    Publication date: March 28, 2024
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventors: Atsushi FUKUI, Katsuya INOUE, Shuhei ODA, Hiroyuki TOYA
  • Patent number: 11876222
    Abstract: Provided are a cathode active material having a suitable particle size and high uniformity, and a nickel composite hydroxide as a precursor of the cathode active material. When obtaining nickel composite hydroxide by a crystallization reaction, nucleation is performed by controlling a nucleation aqueous solution that includes a metal compound, which includes nickel, and an ammonium ion donor so that the pH value at a standard solution temperature of 25° C. becomes 12.0 to 14.0, after which, particles are grown by controlling a particle growth aqueous solution that includes the formed nuclei so that the pH value at a standard solution temperature of 25° C. becomes 10.5 to 12.0, and so that the pH value is lower than the pH value during nucleation.
    Type: Grant
    Filed: August 29, 2022
    Date of Patent: January 16, 2024
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Atsushi Fukui, Katsuya Inoue, Shuhei Oda, Hiroyuki Toya
  • Publication number: 20230369580
    Abstract: Provided is a precursor of a positive electrode active material containing, in a reduced amount, impurities which do not contribute to a charge/discharge reaction but rather corrode a firing furnace and peripheral equipment and thus having excellent battery characteristics and safety, and production method thereof. A method for producing a precursor of a positive electrode active material for nonaqueous electrolyte secondary batteries having a hollow structure or porous structure includes obtaining the precursor by washing nickel-manganese composite hydroxide particles having a particular composition ratio and a pore structure in which pores are present within the particles with an aqueous carbonate solution having a carbonate concentration of 0.1 mol/L or more.
    Type: Application
    Filed: July 12, 2023
    Publication date: November 16, 2023
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventors: Taira Aida, Hiroyuki Toya
  • Patent number: 11742479
    Abstract: Provided is a precursor of a positive electrode active material containing, in a reduced amount, impurities which do not contribute to a charge/discharge reaction but rather corrode a firing furnace and peripheral equipment and thus having excellent battery characteristics and safety, and production method thereof. A method for producing a precursor of a positive electrode active material for nonaqueous electrolyte secondary batteries having a hollow structure or porous structure includes obtaining the precursor by washing nickel-manganese composite hydroxide particles having a particular composition ratio and a pore structure in which pores are present within the particles with an aqueous carbonate solution having a carbonate concentration of 0.1 mol/L or more.
    Type: Grant
    Filed: July 12, 2019
    Date of Patent: August 29, 2023
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Taira Aida, Hiroyuki Toya
  • Patent number: 11735728
    Abstract: A cathode active material for a non-aqueous electrolyte secondary battery including primary particles of a lithium nickel complex oxide represented by a general formula: LizNi1?x?yCoxMyO2+?, and secondary particles in which the primary particles aggregate, wherein a plurality of coated lithium nickel complex oxide particles are formed by disposing a compound containing tungsten and lithium on surfaces of the secondary particles and surfaces of the primary particles positioned inside the secondary particles, and wherein a relative standard deviation of a ratio of a number of atoms of tungsten to a number of atoms of a metallic component other than lithium contained in the coated lithium nickel complex oxide particles is 0.4 or lower.
    Type: Grant
    Filed: November 21, 2018
    Date of Patent: August 22, 2023
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Toshiaki Aihara, Hiroyuki Toya
  • Patent number: 11545663
    Abstract: Provided are a cathode active material having a suitable particle size and high uniformity, and a nickel composite hydroxide as a precursor of the cathode active material. When obtaining nickel composite hydroxide by a crystallization reaction, nucleation is performed by controlling a nucleation aqueous solution that includes a metal compound, which includes nickel, and an ammonium ion donor so that the pH value at a standard solution temperature of 25° C. becomes 12.0 to 14.0, after which, particles are grown by controlling a particle growth aqueous solution that includes the formed nuclei so that the pH value at a standard solution temperature of 25° C. becomes 10.5 to 12.0, and so that the pH value is lower than the pH value during nucleation.
    Type: Grant
    Filed: May 12, 2021
    Date of Patent: January 3, 2023
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Atsushi Fukui, Katsuya Inoue, Shuhei Oda, Hiroyuki Toya
  • Publication number: 20220407065
    Abstract: Provided are a cathode active material having a suitable particle size and high uniformity, and a nickel composite hydroxide as a precursor of the cathode active material. When obtaining nickel composite hydroxide by a crystallization reaction, nucleation is performed by controlling a nucleation aqueous solution that includes a metal compound, which includes nickel, and an ammonium ion donor so that the pH value at a standard solution temperature of 25° C. becomes 12.0 to 14.0, after which, particles are grown by controlling a particle growth aqueous solution that includes the formed nuclei so that the pH value at a standard solution temperature of 25° C. becomes 10.5 to 12.0, and so that the pH value is lower than the pH value during nucleation.
    Type: Application
    Filed: August 29, 2022
    Publication date: December 22, 2022
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventors: Atsushi FUKUI, Katsuya INOUE, Shuhei ODA, Hiroyuki TOYA
  • Patent number: 11390534
    Abstract: A tungsten trioxide whose IWO2.90/IWO3.00 is less than or equal to 0.15 is provided. IWO2.90/IWO3.00 indicates a ratio of a peak intensity IWO2.90 of a (200) plane of WO2.90 to a peak intensity IWO3.00 of a (200) plane of WO3.00 in an XRD pattern.
    Type: Grant
    Filed: November 21, 2018
    Date of Patent: July 19, 2022
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Toshiaki Aihara, Hiroyuki Toya
  • Patent number: 11394024
    Abstract: An object of the present invention is to provide nickel cobalt manganese composite hydroxide particles having a small particle diameter and a uniform particle size distribution, and a method for producing the same. A method for producing a nickel cobalt manganese composite hydroxide by a crystallization reaction is provided. The method includes: a nucleation step of performing nucleation by controlling a pH of an aqueous solution for nucleation including metal compounds containing nickel, cobalt and manganese, and an ammonium ion donor to 12.0 to 14.0 in terms of the pH as measured at a liquid temperature of 25° C. as a standard; and a particle growth step of growing nuclei by controlling a pH of an aqueous solution for particle growth containing nuclei formed in the nucleation step to 10.5 to 12.0 in terms of the pH as measured at a liquid temperature of 25° C. as a standard.
    Type: Grant
    Filed: October 3, 2019
    Date of Patent: July 19, 2022
    Assignees: SUMITOMO METAL MINING CO., LTD., TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hiroyuki Toya, Shin Imaizumi, Kensaku Mori, Atsushi Fukui, Kenji Ikeuchi, Kazuomi Ryoshi, Toshiyuki Osako, Hiroki Nagai
  • Publication number: 20220093919
    Abstract: Provided is an industrial manufacturing method for producing a cathode active material for a non-aqueous electrolyte secondary battery capable of improving output characteristics in low-temperature environment use. A lithium mixture that includes composite hydroxide particles and a lithium compound is calcined in an oxidizing atmosphere under the condition of a temperature rising time from 650° C. to a calcination temperature being set to 0.5 to 1.5 hours and the calcination temperature being set to 850° C. to 1000° C. and maintained for 1.0 to 5.0 hours. The cathode active material that is obtained is expressed by the general formula (A): Li1+sNixCoyMnzMtO2, where ?0.05?s?0.20, x+y+z+t=1, 0.3?x?0.7, 0.1?y?0.4, 0.1?z?0.4, 0?t?0.05, and M is one or more types of elements selected from Ca, Mg, Al, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, and W.
    Type: Application
    Filed: December 1, 2021
    Publication date: March 24, 2022
    Inventors: Shuhei ODA, Hiroyuki TOYA, Katsuya INOUE
  • Patent number: 11283072
    Abstract: Transition metal composite hydroxide particles as a precursor to a cathode active material for use in a non-aqueous electrolyte rechargeable battery, where the transition metal composite hydroxide has secondary particles formed by an aggregation of plate-shaped primary particles and fine primary particles, are described. The secondary particles have a center section formed by the plate-shaped primary particles, a layered structure with a low-density section formed by the fine primary particles, and a high-density section formed by the plate-shaped primary particles on the outside of the center section. The average value of the ratio of the center section outer diameter to the particle size of the secondary particles is 30% to 80%, and the average value of the ratio of the high-density section radial direction thickness to the particle size of the secondary particles is 5% to 25%.
    Type: Grant
    Filed: August 13, 2019
    Date of Patent: March 22, 2022
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Yasutaka Kamata, Taira Aida, Hiroyuki Toya
  • Publication number: 20210265629
    Abstract: Provided are a cathode active material having a suitable particle size and high uniformity, and a nickel composite hydroxide as a precursor of the cathode active material. When obtaining nickel composite hydroxide by a crystallization reaction, nucleation is performed by controlling a nucleation aqueous solution that includes a metal compound, which includes nickel, and an ammonium ion donor so that the pH value at a standard solution temperature of 25° C. becomes 12.0 to 14.0, after which, particles are grown by controlling a particle growth aqueous solution that includes the formed nuclei so that the pH value at a standard solution temperature of 25° C. becomes 10.5 to 12.0, and so that the pH value is lower than the pH value during nucleation.
    Type: Application
    Filed: May 12, 2021
    Publication date: August 26, 2021
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventors: Atsushi FUKUI, Katsuya INOUE, Shuhei ODA, Hiroyuki TOYA
  • Patent number: 11056681
    Abstract: Provided is a method for producing the positive electrode active material for nonaqueous electrolyte secondary batteries, including a first step of mixing a Li-metal composite oxide powder which is represented by the general formula: LizNi1-x-yCoxMyO2 (where 0?x?0.35, 0?y?0.35, and 0.97?z?1.30 are satisfied, and M is at least one element selected from Mn, V, Mg, Mo, Nb, Ti and Al) and constituted by primary particles and secondary particles, to an alkaline solution with a W compound dissolved therein, and immersing a resulting mixture, followed by solid-liquid separation, to obtain a W mixture with W uniformly dispersed on the surface of the primary particles of the composite oxide, and a second step of heat-treating the W mixture to thereby form a compound containing W and Li on the surface of the primary particles of the composite oxide powder.
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: July 6, 2021
    Inventors: Yuki Furuichi, Tetsufumi Komukai, Hiroyuki Toya
  • Patent number: 11038168
    Abstract: Provided are a cathode active material having a suitable particle size and high uniformity, and a nickel composite hydroxide as a precursor of the cathode active material. When obtaining nickel composite hydroxide by a crystallization reaction, nucleation is performed by controlling a nucleation aqueous solution that includes a metal compound, which includes nickel, and an ammonium ion donor so that the pH value at a standard solution temperature of 25° C. becomes 12.0 to 14.0, after which, particles are grown by controlling a particle growth aqueous solution that includes the formed nuclei so that the pH value at a standard solution temperature of 25° C. becomes 10.5 to 12.0, and so that the pH value is lower than the pH value during nucleation.
    Type: Grant
    Filed: February 9, 2018
    Date of Patent: June 15, 2021
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Atsushi Fukui, Katsuya Inoue, Shuhei Oda, Hiroyuki Toya
  • Publication number: 20200403238
    Abstract: A cathode active material for a non-aqueous electrolyte secondary battery including primary particles of a lithium nickel complex oxide represented by a general formula: LizNi1?x?yCoxMyO2+?, and secondary particles in which the primary particles aggregate, wherein a plurality of coated lithium nickel complex oxide particles are formed by disposing a compound containing tungsten and lithium on surfaces of the secondary particles and surfaces of the primary particles positioned inside the secondary particles, and wherein a relative standard deviation of a ratio of a number of atoms of tungsten to a number of atoms of a metallic component other than lithium contained in the coated lithium nickel complex oxide particles is 0.4 or lower.
    Type: Application
    Filed: November 21, 2018
    Publication date: December 24, 2020
    Inventors: Toshiaki AIHARA, Hiroyuki TOYA
  • Publication number: 20200403218
    Abstract: Provided is a method for producing the positive electrode active material for nonaqueous electrolyte secondary batteries, including a first step of mixing a Li-metal composite oxide powder which is represented by the general formula: LizNi1-x-yCoxMyO2 (where 0?x?0.35, 0·y?0.35, and 0.97?z?1.30 are satisfied, and M is at least one element selected from Mn, V, Mg, Mo, Nb, Ti and Al) and constituted by primary particles and secondary particles, to an alkaline solution with a W compound dissolved therein, and immersing a resulting mixture, followed by solid-liquid separation, to obtain a W mixture with W uniformly dispersed on the surface of the primary particles of the composite oxide, and a second step of heat-treating the W mixture to thereby form a compound containing W and Li on the surface of the primary particles of the composite oxide powder.
    Type: Application
    Filed: August 31, 2020
    Publication date: December 24, 2020
    Inventors: Yuki Furuichi, Tetsufumi Komukai, Hiroyuki Toya
  • Patent number: 10840509
    Abstract: A positive electrode active material for lithium secondary batteries disclosed herein comprises a lithium transition metal oxide of a layered structure, represented by formula Li1+?NixCoyMnzCa?M?O2 (where ?0.05???0.2, x+y+z+?+??1, 0.3?x??0.7, 0.1?y?0.4, 0.1?z?0.4, 0.0002???0.0025, 0.0002??+??0.02, and in a case where ?>0, M is absent or represents one, two or more elements selected from the group consisting of Na, Mg, Al, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta and W). The tap density of the positive electrode active material ranges from 1.8 to 2.5 g/cm3.
    Type: Grant
    Filed: January 22, 2014
    Date of Patent: November 17, 2020
    Assignees: TOYOTA JIDOSHA KABUSHIKI KAISHA, SUMITOMO METAL MINING CO., LTD.
    Inventors: Hideyuki Saka, Shuhei Oda, Tetsutaro Hayashi, Hiroyuki Toya
  • Patent number: 10829385
    Abstract: Provided are a positive electrode active material for nonagueous secondary batteries, the material having a narrow particle-size distribution and a monodisperse property and being capable of increasing a battery capacity; an industrial production method thereof; and a nonaqueous secondary battery using the positive electrode active material and having excellent electrical characteristics. The positive electrode active material is represented by a general formula: Li1+uNixCoyMnzMtO2+? (wherein, 0.05?u?0.95, x+y+z+t=1, 0?x?0.5, 0?y?0.5, 0.5?z<0.8, 0?t?0.1, and M is an additive element and at least one element selected from Mg, Ca, Al, Ti, V, Cr, Zr, Nb, Mo, and W), has an average particle diameter of 3 to 12 um, and has [(d90?d10)/average particle diameter], an index indicating a scale of particle-size distribution, of 0.60 or less.
    Type: Grant
    Filed: May 30, 2012
    Date of Patent: November 10, 2020
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Satoshi Matsumoto, Shuhei Oda, Katsuya Inoue, Hiroyuki Toya
  • Patent number: 10797302
    Abstract: Provided is a method for producing the positive electrode active material for nonaqueous electrolyte secondary batteries, including a first step of mixing a Li-metal composite oxide powder which is represented by the general formula: LizNi1-x-yCoxMyO2 (where 0?x?0.35, 0?y?0.35, and 0.97?z?1.30 are satisfied, and M is at least one element selected from Mn, V, Mg, Mo, Nb, Ti and Al) and constituted by primary particles and secondary particles, to an alkaline solution with a W compound dissolved therein, and immersing a resulting mixture, followed by solid-liquid separation, to obtain a W mixture with W uniformly dispersed on the surface of the primary particles of the composite oxide, and a second step of heat-treating the W mixture to thereby form a compound containing W and Li on the surface of the primary particles of the composite oxide powder.
    Type: Grant
    Filed: April 15, 2016
    Date of Patent: October 6, 2020
    Assignee: Sumitomo Metal Mining Co., Ltd.
    Inventors: Yuki Furuichi, Tetsufumi Komukai, Hiroyuki Toya
  • Publication number: 20200308018
    Abstract: A tungsten trioxide whose IWO2.90/IWO3.00 is less than or equal to 0.15 is provided. IWO2.90/IWO3.00 indicates a ratio of a peak intensity IWO2.90 of a (200) plane of WO2.90 to a peak intensity IWO3.00 of a (200) plane of WO3.00 in an XRD pattern.
    Type: Application
    Filed: November 21, 2018
    Publication date: October 1, 2020
    Inventors: Toshiaki AIHARA, Hiroyuki TOYA