Patents by Inventor Hisayuki Orita

Hisayuki Orita has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170306825
    Abstract: Provided is a CO2 recovery device of an internal combustion engine capable of efficiently recovering CO2 emitted from an internal combustion engine or CO2 in the air, and of efficiently synthesizing methane using CO2. A CO2 recovery device of an internal combustion engine includes a CO2 capturing material disposed at a through channel of gas including CO2 to capture CO2 in the gas, and methanation catalyst to let CO2 desorbed from the CO2 capturing material react with H2 obtained from a H2 supply source to generate methane. The CO2 recovery device has a function to raise temperature of the CO2 capturing material using heat generated from the internal combustion engine to desorb CO2.
    Type: Application
    Filed: October 7, 2015
    Publication date: October 26, 2017
    Applicant: HITACHI, LTD.
    Inventors: Masato KANEEDA, Hisayuki ORITA, Motoyuki ABE, Yoshihiro SUKEGAWA, Kazuhiro ORYOJI, Yuuki OKUDA
  • Patent number: 9399939
    Abstract: A combustion exhaust gas treatment system comprising: a heat exchanger (A) for recovering heat contained in the combustion exhaust gas into heat medium, an absorption column for obtaining CO2 removed gas by absorbing CO2 in the combustion exhaust gas into absorbent, a heat exchanger (B) for applying heat recovered by heat medium to the CO2 absorbed absorbent, a desorption column for desorbing the absorbent by removing CO2 from the CO2 absorbed absorbent, a flash tank for flash vaporizing the desorbed absorbent and a heat exchanger (E) for transferring heat from the desorbed absorbent to the CO2 absorbed absorbent, wherein the CO2 absorbed absorbent can be supplied from the absorption column to the desorption column via the heat exchanger (E) and the heat exchanger (B) in this order, and the desorbed absorbent can be supplied from the desorption column to the absorption column via the flash tank and the heat exchanger (E) in this order.
    Type: Grant
    Filed: June 19, 2012
    Date of Patent: July 26, 2016
    Assignee: MITSUBISHI HITACHI POWER SYSTEMS, LTD.
    Inventors: Jun Shimamura, Toshio Katsube, Kouichi Yokoyama, Yoshihiro Kidera, Nobuyoshi Mishima, Hisayuki Orita
  • Patent number: 9375673
    Abstract: A CO2 separation unit for recovering CO2 from a CO2-containing gas by using a solid CO2 capturing material, in which the amount of used steam is decreased: the unit comprising a capturing material container, a first pipeline for allowing the CO2-containing gas to flow therethrough into the capturing material container, a second pipeline for allowing a gas from which CO2 has been removed to be discharged therethrough, a third pipeline for introducing a steam-containing gas to the inside of the capturing material container, a fourth pipeline for allowing a desorbed CO2-containing gas to be discharged therethrough, wherein the unit further includes a compressor for compressing steam, a fifth pipeline for connecting the capturing material container with a suction port of the compressor, and a sixth pipeline for connecting a discharge port of the compressor with the third pipeline.
    Type: Grant
    Filed: January 15, 2013
    Date of Patent: June 28, 2016
    Assignee: Hitachi, Ltd.
    Inventors: Kohei Yoshikawa, Hiroki Sato, Masato Kaneeda, Shuichi Kanno, Hisayuki Orita
  • Patent number: 8961170
    Abstract: A pulverized coal thermal power generation system that significantly reduces the amount of NOx emissions from a boiler and does not require a denitration unit is provided. When a denitration unit is not used, performance to remove mercury from a boiler waste gas is reduced. A waste gas purification system for a pulverized coal boiler, that compensates for this is provided. A pulverized coal boiler having a furnace for burning pulverized coal, burners for supplying pulverized coal and air used for combustion into the furnace so as to burn the pulverized coal in an insufficient air state and after-air ports provided on the downstream side of the burners for supplying air used for perfect combustion characterized in that, an air ratio in the furnace is 1.05 to 1.14, and the residence time of a combustion gas from the burner disposed on the uppermost stage to a main after-air port is 1.1 to 3.3 seconds.
    Type: Grant
    Filed: May 14, 2008
    Date of Patent: February 24, 2015
    Assignee: Babcock-Hitachi K.K.
    Inventors: Hisayuki Orita, Masayuki Taniguchi, Akihito Orii, Yuki Kamikawa, Hirofumi Okazaki
  • Publication number: 20150013543
    Abstract: A CO2 separation unit for recovering CO2 from a CO2-containing gas by using a solid CO2 capturing material, in which the amount of used steam is decreased: the unit comprising a capturing material container (1) having a CO2 capturing material for capturing CO2, a first pipeline (2a) for allowing the CO2-containing gas to flow therethrough into the capturing material container (1), a second pipeline (2b) for allowing a gas from which CO2 has been removed by the CO2 capturing material to be discharged therethrough from the capturing material container (1), a third pipeline (2c) for introducing a steam-containing gas to the inside of the capturing material container (1), a fourth pipeline (2d) for allowing a desorbed CO2-containing gas desorbed from the CO2 capturing material, while the steam-containing gas flows in the container, to be discharged therethrough from the capturing material container (1), wherein the unit further includes a compressor (4a) for compressing steam, a fifth pipeline (2e) for connecting
    Type: Application
    Filed: January 15, 2013
    Publication date: January 15, 2015
    Inventors: Kohei Yoshikawa, Hiroki Sato, Masato Kaneeda, Shuichi Kanno, Hisayuki Orita
  • Patent number: 8920548
    Abstract: The CO2 capture system by chemical absorption for removing CO2 from a combustion exhaust gas by a solvent, comprising: an absorber for absorbing CO2 by a solvent, a regenerator for heating a rich solvent absorbed CO2 thereby releasing CO2, a gas exhaust system for discharging gas from the regenerator, a gas compressor installed in the gas exhaust system, a heat exchanger disposed downstream of the gas compressor for exchanging heat between compressed gas and rich solvent to be supplied to the regenerator, a gas-liquid separator disposed downstream of the heat exchanger for separating gas from condensed water, a condensed water supply system for supplying condensed water from the gas-liquid separator to the regenerator, another gas exhaust system for discharging gas containing high-concentration CO2 from the gas-liquid separator, and a compressor disposed downstream of the gas-liquid separator in the another gas exhaust system for pressurizing the gas containing high-concentration CO2.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: December 30, 2014
    Assignee: Babcock-Hitachi K.K.
    Inventors: Nobuyuki Hokari, Hisayuki Orita, Masaaki Mukaide, Jun Shimamura, Kouichi Yokoyama, Noriko Yoshida
  • Patent number: 8894757
    Abstract: The CO2 capture system by chemical absorption for removing CO2 from a combustion exhaust gas by a solvent, comprising: an absorber for absorbing CO2 by a solvent, a regenerator for heating a rich solvent absorbed CO2 thereby releasing CO2, a gas exhaust system for discharging gas from the regenerator, a gas compressor installed in the gas exhaust system, a heat exchanger disposed downstream of the gas compressor for exchanging heat between compressed gas and rich solvent to be supplied to the regenerator, a gas-liquid separator disposed downstream of the heat exchanger for separating gas from condensed water, a condensed water supply system for supplying condensed water from the gas-liquid separator to the regenerator, another gas exhaust system for discharging gas containing high-concentration CO2 from the gas-liquid separator, and a compressor disposed downstream of the gas-liquid separator in the another gas exhaust system for pressurizing the gas containing high-concentration CO2.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: November 25, 2014
    Assignee: Babcock-Hitachi K.K.
    Inventors: Nobuyuki Hokari, Hisayuki Orita, Masaaki Mukaide, Jun Shimamura, Kouichi Yokoyama, Noriko Yoshida
  • Patent number: 8752385
    Abstract: A boiler system including an electric power generation system having a boiler, a steam turbine for generating electric power by steams which received heat at a boiler, a condenser provided at the downstream thereof for condensing the steams, and a heater for heating condensed water by steams extracted from the steam turbine and, further, a CO2 capture system of sorbing and capturing a CO2 gas in an exhausted gas exhausted from the boiler by using a solid CO2 sorbent, and a chimney of exhausting an exhaust gas in the CO2 capture system after recovery of CO2 or an exhaust gas exhausted from the boiler, in which the temperature of a fluid concerned with the boiler system is increased by using the exhaust gas exhausted from the CO2 capture system.
    Type: Grant
    Filed: August 21, 2012
    Date of Patent: June 17, 2014
    Assignee: Hitachi, Ltd.
    Inventors: Masato Kaneeda, Hiroki Sato, Kohei Yoshikawa, Shuichi Kanno, Hisayuki Orita
  • Publication number: 20130327025
    Abstract: A combustion exhaust gas treatment system comprising: a heat exchanger (A) for recovering heat contained in the combustion exhaust gas into heat medium, an absorption column for obtaining CO2 removed gas by absorbing CO2 in the combustion exhaust gas into absorbent, a heat exchanger (B) for applying heat recovered by heat medium to the CO2 absorbed absorbent, a desorption column for desorbing the absorbent by removing CO2 from the CO2 absorbed absorbent, a flash tank for flash vaporizing the desorbed absorbent and a heat exchanger (E) for transferring heat from the desorbed absorbent to the CO2 absorbed absorbent, wherein the CO2 absorbed absorbent can be supplied from the absorption column to the desorption column via the heat exchanger (E) and the heat exchanger (B) in this order, and the desorbed absorbent can be supplied from the desorption column to the absorption column via the flash tank and the heat exchanger (E) in this order.
    Type: Application
    Filed: June 19, 2012
    Publication date: December 12, 2013
    Applicant: BABCOCK-HITACHI KABUSHIKI KAISHA
    Inventors: Jun Shimamura, Toshio Katsube, Kouichi Yokoyama, Yoshihiro Kidera, Nobuyoshi Mishima, Hisayuki Orita
  • Publication number: 20130255547
    Abstract: A pulverized coal-fired boiler efficiently supplies air to a central part of a furnace and the neighborhood of a furnace wall, thereby promoting mixture with combustion gas, and reducing both NOx and CO. The main after air ports are structured so as to jet air having a large momentum for enabling arrival at the central part of the furnace, and the sub-after air ports are structured so as to jet air having a small momentum to the neighborhood of the wall face of the furnace, and a sectional center of each of the sub-after air ports is within a range from 1 to 5 times of a caliber of the main after air ports from a sectional center of each of the main after air ports.
    Type: Application
    Filed: May 31, 2013
    Publication date: October 3, 2013
    Applicant: BABCOCK-HITACHI K.K
    Inventors: Yuki KAMIKAWA, Masayuki TANIGUCHI, Hisayuki ORITA, Hironobu KOBAYASHI, Akira BABA, Toshihiko MINE, Shinichirou NOMURA, Noriyuki OOYATSU, Satoshi TADAKUMA, Hidehisa YOSHIZAKO, Hiroaki KANEMOTO, Kouji KURAMASHI, Akihito ORII, Shinji TSUDA, Hirofumi OKAZAKI, Takanori YANO, Katsumi SHIMOHIRA
  • Patent number: 8505472
    Abstract: A pulverized coal-fired boiler efficiently supplies air to a central part of a furnace and the neighborhood of a furnace wall, thereby promoting mixture with combustion gas, and reducing both NOx and CO. The main after air ports are structured so as to jet air having a large momentum for enabling arrival at the central part of the furnace, and the sub-after air ports are structured so as to jet air having a small momentum to the neighborhood of the wall face of the furnace, and a sectional center of each of the sub-after air ports is within a range from 1 to 5 times of a caliber of the main after air ports from a sectional center of each of the main after air ports.
    Type: Grant
    Filed: January 10, 2007
    Date of Patent: August 13, 2013
    Assignee: Babcock-Hitachi K.K.
    Inventors: Yuki Kamikawa, Masayuki Taniguchi, Hisayuki Orita, Hironobu Kobayashi, Akira Baba, Toshihiko Mine, Shinichirou Nomura, Noriyuki Ooyatsu, Satoshi Tadakuma, Hidehisa Yoshizako, Hiroaki Kanemoto, Kouji Kuramashi, Akihito Orii, Shinji Tsuda, Hirofumi Okazaki, Takanori Yano, Katsumi Shimohira
  • Patent number: 8500881
    Abstract: The present invention discloses a carbon dioxide capture power generation system provided with a boiler to combust a fuel in the oxygen atmosphere, a carbon dioxide capture equipment to remove carbon dioxide in the wake flow of the boiler, a piping branching from the wake flow of the boiler to recycle the combustion exhaust gas to the boiler, and a desulfurization equipment to remove sulfur oxides and a sulfuric acid removal equipment to remove a sulfuric acid gas in the upstream of carbon dioxide capture equipment and in the wake flow of the boiler.
    Type: Grant
    Filed: August 19, 2010
    Date of Patent: August 6, 2013
    Assignee: Hitachi, Ltd.
    Inventors: Hisayuki Orita, Masaaki Mukaide, Nobuyuki Hokari, Tsuyoshi Shibata, Masayuki Taniguchi
  • Publication number: 20130062883
    Abstract: A boiler system including an electric power generation system having a boiler, a steam turbine for generating electric power by steams which received heat at a boiler, a condenser provided at the downstream thereof for condensing the steams, and a heater for heating condensed water by steams extracted from the steam turbine and, further, a CO2 capture system of sorbing and capturing a CO2 gas in an exhausted gas exhausted from the boiler by using a solid CO2 sorbent, and a chimney of exhausting an exhaust gas in the CO2 capture system after recovery of CO2 or an exhaust gas exhausted from the boiler, in which the temperature of a fluid concerned with the boiler system is increased by using the exhaust gas exhausted from the CO2 capture system.
    Type: Application
    Filed: August 21, 2012
    Publication date: March 14, 2013
    Applicant: Hitachi, Ltd.
    Inventors: Masato Kaneeda, Hiroki Sato, Kohei Yoshikawa, Shuichi Kanno, Hisayuki Orita
  • Publication number: 20130064720
    Abstract: A carbon dioxide recovery system is provided, in which, a filling rate of the carbon dioxide sorbent in the container indicated by f [%] is positive and larger than or equal to the value obtained by the following expression of 100×(p/(RT))×(x?C)/(a×(100+x/r?100×x/(rC)?x)+(p/(RT))×(x?C)), with respect to the effective molar quantity of the captured carbon dioxide per 1 L of the carbon dioxide sorbent (=a) of the carbon dioxide sorbent to be used, wherein a demanded concentration of recovered carbon dioxide is indicated by x [%], and an amount of the captured gases other than carbon dioxide is indicated by r, and a concentration of dried carbon dioxide in a carbon dioxide-containing gas is indicated by C [%], and a total pressure of the carbon dioxide sorbent occurring when carbon dioxide is captured is indicated by p [Pa].
    Type: Application
    Filed: August 23, 2012
    Publication date: March 14, 2013
    Applicant: Hitachi, Ltd
    Inventors: Hiroki SATO, Kohei Yoshikawa, Masato Kaneeda, Hisayuki Orita, Shuichi Kanno
  • Publication number: 20110076216
    Abstract: The present invention discloses a carbon dioxide capture power generation system provided with a boiler to combust a fuel in the oxygen atmosphere, a carbon dioxide capture equipment to remove carbon dioxide in the wake flow of the boiler, a piping branching from the wake flow of the boiler to recycle the combustion exhaust gas to the boiler, and a desulfurization equipment to remove sulfur oxides and a sulfuric acid removal equipment to remove a sulfuric acid gas in the upstream of carbon dioxide capture equipment and in the wake flow of the boiler.
    Type: Application
    Filed: August 19, 2010
    Publication date: March 31, 2011
    Applicant: Hitachi, Ltd.
    Inventors: Hisayuki Orita, Masaaki Mukaide, Nobuyuki Hokari, Tsuyoshi Shibata, Masayuki Taniguchi
  • Patent number: 7878130
    Abstract: A overfiring air port of the present invention is to supply an incomplete combustion region with air making up for combustion-shortage, in a furnace in which the incomplete combustion region less than stoichiometric ratio is formed by a burner. Furthermore, the airport is characterized by comprising: a nozzle mechanism for injecting air including an axial velocity component of an air flow and a radial velocity component directed to a center line of the airport; and a control mechanism for controlling a ratio of these velocity components.
    Type: Grant
    Filed: November 3, 2005
    Date of Patent: February 1, 2011
    Assignee: Babcock-Hitachi K.K.
    Inventors: Kenji Yamamoto, Hirofumi Okazaki, Masayuki Taniguchi, Kazumi Yasuda, Kenji Kiyama, Takanori Yano, Akira Baba, Kenichi Ochi, Hisayuki Orita, Akihito Orii, Yuki Kamikawa, Kouji Kuramashi
  • Publication number: 20100223926
    Abstract: A pulverized coal thermal power generation system that significantly reduces the amount of NOx emissions from a boiler and does not require a denitration unit is provided. When a denitration unit is not used, performance to remove mercury from a boiler waste gas is reduced. A waste gas purification system for a pulverized coal boiler, that compensates for this is provided. A pulverized coal boiler having a furnace for burning pulverized coal, burners for supplying pulverized coal and air used for combustion into the furnace so as to burn the pulverized coal in an insufficient air state and after-air ports provided on the downstream side of the burners for supplying air used for perfect combustion characterized in that, an air ratio in the furnace is 1.05 to 1.14, and the residence time of a combustion gas from the burner disposed on the uppermost stage to a main after-air port is 1.1 to 3.3 seconds.
    Type: Application
    Filed: May 14, 2008
    Publication date: September 9, 2010
    Applicant: Babcock-Hitachi K.K.
    Inventors: Hisayuki Orita, Masayuki Taniguchi, Akihito Orii, Yuki Kamikawa, Hirofumi Okazaki
  • Publication number: 20100224108
    Abstract: A pulverized coal-fired boiler efficiently supplies air to a central part of a furnace and the neighborhood of a furnace wall, thereby promoting mixture with combustion gas, and reducing both NOx and CO. The main after air ports are structured so as to jet air having a large momentum for enabling arrival at the central part of the furnace, and the sub-after air ports are structured so as to jet air having a small momentum to the neighborhood of the wall face of the furnace, and a sectional center of each of the sub-after air ports is within a range from 1 to 5 times of a caliber of the main after air ports from a sectional center of each of the main after air ports.
    Type: Application
    Filed: January 10, 2007
    Publication date: September 9, 2010
    Inventors: Yuki Kamikawa, Masayuki Taniguchi, Hisayuki Orita, Hironobu Kobayashi, Akira Baba, Toshihiko Mine, Shinichirou Nomura, Noriyuki Ooyatsu, Satoshi Tadakuma, Hidehisa Yoshizako, Hiroaki Kanemoto, Kouji Kuramashi, Akihito Orii, Shinji Tsuda, Hirofumi Okazaki, Takanori Yano, Katsumi Shimohira
  • Publication number: 20090277363
    Abstract: An oxyfuel boiler system, comprising: an oxygen generator to separate oxygen from air; a coal supply unit to dry and pulverize coal; a burner having a fuel feed path for feeding pulverized coal supplied from the coal supply unit and an oxidizer feed path for feeding oxidizer; a boiler provided with the burner; an exhaust gas discharge line to discharge exhaust gas generated in the boiler into environment; an exhaust gas treatment apparatus provided in the exhaust gas discharge line, a CO2 separator provided downstream of the exhaust gas treatment apparatus in the exhaust gas discharge line to separate CO2 from the exhaust gas; an exhaust gas recirculation line including an exhaust gas tapping port provided in the exhaust gas discharge line to extract a part of the exhaust gas; and an oxygen supply line to supply the oxygen generated at the oxygen generator to the exhaust gas flowing through the exhaust gas recirculation line, wherein the exhaust gas treatment apparatus is provided with at least an SO3 removin
    Type: Application
    Filed: May 5, 2009
    Publication date: November 12, 2009
    Applicant: Hitachi, Ltd.
    Inventors: Tsuyoshi SHIBATA, Masayuki TANIGUCHI, Hisayuki ORITA, Osamu ITO
  • Publication number: 20060115779
    Abstract: A overfiring air port of the present invention is to supply an incomplete combustion region with air making up for combustion-shortage, in a furnace in which the incomplete combustion region less than stoichiometric ratio is formed by a burner. Furthermore, the airport is characterized by comprising: a nozzle mechanism for injecting air including an axial velocity component of an air flow and a radial velocity component directed to a center line of the airport; and a control mechanism for controlling a ratio of these velocity components.
    Type: Application
    Filed: November 3, 2005
    Publication date: June 1, 2006
    Applicant: BABCOCK-HITACHI K.K.
    Inventors: Kenji Yamamoto, Hirofumi Okazaki, Masayuki Taniguchi, Kazumi Yasuda, Kenji Kiyama, Takanori Yano, Akira Baba, Kenichi Ochi, Hisayuki Orita, Akihito Orii, Yuki Kamikawa, Kouji Kuramashi