Patents by Inventor Hitoshi Furuta

Hitoshi Furuta has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11940405
    Abstract: A sensor element (10) having a laminate structure, and extending in an axial direction AX, the sensor element including a first and second ceramic layers (118B, 115) disposed apart from each other in a laminating direction; a third ceramic layer (118) intervening between the first and second ceramic layers in the laminating direction and having a hollow space (10G) formed therein; and an internal space which is the hollow space surrounded by the first ceramic layer, the second ceramic layer, and the third ceramic layer, wherein, at a periphery (10f) of the internal space, a fourth ceramic layer (181) containing as a main component a ceramic material different from that contained as a main component in the first and third ceramic layers intervenes between the first ceramic layer and the third ceramic layer which are exposed to the internal space. Also disclosed is a method for manufacturing the gas sensor element.
    Type: Grant
    Filed: August 27, 2020
    Date of Patent: March 26, 2024
    Assignee: NITERRA CO., LTD.
    Inventors: Hitoshi Furuta, Akinori Kojima
  • Patent number: 11867659
    Abstract: A sensor element (10) including: a measurement chamber (150); a pump cell (110) including a solid electrolyte (111), an inner electrode (113) exposed to the measurement chamber, and an outer electrode (112), the pump cell being configured to adjust an oxygen concentration in the measurement chamber; a diffusion resistance portion (151); and a detection cell (120) configured to measure a concentration of a specific gas in the measurement target gas after the adjustment of the oxygen concentration. The outer electrode is covered by a porous layer (114) and is disposed in a hollow space (10G) surrounded by a gas non-permeable dense layer 115, 118. The hollow space is in communication with an air introduction hole (10h) that is open on a rear side relative to the diffusion resistance portion. The outer electrode is exposed via the porous layer to air introduced through the air introduction hole.
    Type: Grant
    Filed: April 20, 2020
    Date of Patent: January 9, 2024
    Assignee: NITERRA CO., LTD.
    Inventors: Hitoshi Furuta, Kentaro Kamada, Akinori Kojima, Satoshi Yamahara, Akihiro Hara
  • Patent number: 11761924
    Abstract: A sensor element (100) including a measurement chamber (89); a pump cell (83) including a solid electrolyte body (69), an inner electrode (101), and an outer electrode (99); and a reference cell (85). At least one electrode contains a noble metal and a component of the solid electrolyte body. In a cross section, the at least one electrode has a noble metal region (205), a solid electrolyte body region (203), and a coexistence region (207) in which the noble metal and the component of the solid electrolyte body coexist. Further, in the cross section, an area ratio SR of the coexistence region is not less than 15.5% and is less than 30%.
    Type: Grant
    Filed: September 16, 2020
    Date of Patent: September 19, 2023
    Assignee: NGK SPARK PLUG CO., LTD.
    Inventors: Yosuke Suzuki, Takumi Yamada, Hitoshi Furuta, Kentaro Kamada
  • Publication number: 20230204535
    Abstract: A gas sensor element (10) which includes an element body portion (100); a pump cell (110) which is configured to adjust a concentration of oxygen in a gas to be measured which is introduced into the element body portion (100); a detection chamber (160) which is formed inside the element body portion (100) and into which the gas to be measured in which the concentration of oxygen has been adjusted is introduced; and a layer-shaped cathode electrode (133) which is housed in the detection chamber (160) and configured to decompose NO. A relationship between a volume V1 of the detection chamber (160) and a volume V2 of the cathode electrode (133) in the gas sensor element (10) satisfies either one of conditions (A) and (B) as defined herein.
    Type: Application
    Filed: December 20, 2022
    Publication date: June 29, 2023
    Applicant: NGK SPARK PLUG CO., LTD.
    Inventors: Hitoshi FURUTA, Akinori KOJIMA, Kentaro KAMADA, Yosuke SUZUKI
  • Publication number: 20230068377
    Abstract: A gas sensor element includes: a first ceramic structure (100A) having a detection cell (120); a second ceramic structure (100B) having a pump cell (110) disposed apart from the first ceramic structure in a lamination direction; and a third ceramic structure (100C) having a frame-shaped body (200) surrounding a space (150a) formed between the first and second ceramic structures, the frame-shaped body including a gas introduction portion (151) and a peripheral wall portion (141). A gap (150b) connected to the space (150a) is formed between an opposed surface (151b1) and the second ceramic structure. A ceramic buffer layer (300) having a lower shrinkage start temperature than a material for forming the gas introduction portion is formed on the opposed surface so as to overlap a boundary portion X between an edge (150b1) on the external side of the gap and the second ceramic structure when viewed in the lamination direction.
    Type: Application
    Filed: August 30, 2022
    Publication date: March 2, 2023
    Applicant: NGK SPARK PLUG CO., LTD.
    Inventors: Hitoshi FURUTA, Akinori KOJIMA, Kentaro KAMADA, Yosuke SUZUKI
  • Patent number: 11549925
    Abstract: A NOx sensor element includes: a first pump cell configured to adjust an oxygen concentration in a first measurement chamber; a diffusion resistance portion configured to adjust a diffusion rate of a measurement target gas introduced into the first measurement chamber; and a second pump cell in which a pump current corresponding to a NOx concentration in the measurement target gas after the adjustment of the oxygen concentration, flows. The first pump cell includes: a first solid electrolyte; an inner pump electrode containing a noble metal, and exposed to the first measurement chamber; and an outer pump electrode containing a noble metal, and disposed outside the first measurement chamber. The outer pump electrode contains not less than 22% by mass of a main component of the first solid electrolyte.
    Type: Grant
    Filed: March 30, 2020
    Date of Patent: January 10, 2023
    Assignee: NGK SPARK PLUG CO., LTD.
    Inventors: Kentaro Kamada, Hitoshi Furuta
  • Patent number: 11422108
    Abstract: A gas sensor including a detection element section (71) including a solid electrolyte body and a pair of electrodes disposed on the solid electrolyte body, and a heater (73) for heating the detection element section (71). Inherent characteristic information is recorded in a record section (170) provided on the gas sensor or a record section provided separately from the gas sensor. The inherent characteristic information is information specific to the detection element section (71) and which allows setting of a relation between a change in the temperature of the detection element section (71) and a change in the internal resistance between the pair of electrodes.
    Type: Grant
    Filed: June 19, 2019
    Date of Patent: August 23, 2022
    Assignee: NGK SPARK PLUG CO., LTD.
    Inventors: Kentaro Kamada, Hitoshi Furuta
  • Patent number: 11385198
    Abstract: A sensor element includes: three electrode pads provided on the first main surface, and electrically connected to a connection terminal, the three electrode pads including; a pad group including two electrode pads which are arranged in a widthwise direction of the sensor element, and a single pad which is not overlapped with the pad group when viewed in a widthwise direction, the single pad including a main body portion which has a width greater than a clearance between the two electrode pads of the pad group, which is electrically connected to the connection terminal, and a connection portion which is connected to a conductor formed within a through hole extending within the sensor element in a thickness direction, and which is adjacent to a side surface of the main body portion.
    Type: Grant
    Filed: May 2, 2019
    Date of Patent: July 12, 2022
    Assignee: NGK SPARK PLUG CO., LTD.
    Inventors: Hitoshi Furuta, Akinori Kojima
  • Publication number: 20220187237
    Abstract: A sensor element including a first ceramic layer (105), and a measurement electrode (110a) and a reference electrode (108a) disposed thereon, further comprising a through hole (105a) formed in the first ceramic layer, a through hole conductor (121c), a reference lead (108b) connected to the reference electrode and connected to the through hole conductor, and a second ceramic layer (103) disposed to face the first ceramic layer, the sensor element further including a gas flow chamber (130) provided between the first and second ceramic layers, and facing the through hole and being in communication with the reference lead, and a gas flow passage (170) open to a second region (100s) of an outer surface of the sensor element, thereby establishing communication between the gas flow chamber and an outside atmosphere. Also disclosed is gas sensor including the gas sensor element and a method for manufacturing the gas sensor element.
    Type: Application
    Filed: September 28, 2020
    Publication date: June 16, 2022
    Applicant: NGK SPARK PLUG CO., LTD.
    Inventors: Hitoshi FURUTA, Akinori KOJIMA
  • Patent number: 11255812
    Abstract: Disclosed is a gas sensor element having an electrode containing a first metal as a predominant component and a lead containing a second metal as a predominant component. The electrode and the lead are connected directly at a connection boundary thereof, or connected indirectly via a connection joint. The connection boundary or joint includes a component region where either one of the first and second metals lower in specific gravity than the other of the first and second metals is contained in an amount ranging between those in the electrode and the lead.
    Type: Grant
    Filed: March 26, 2019
    Date of Patent: February 22, 2022
    Assignee: NGK SPARK PLUG CO., LTD.
    Inventors: Hitoshi Furuta, Tetsuo Yamada, Yoshihiro Nakano
  • Patent number: 11054382
    Abstract: A sensor includes a pump cell and a reference cell generating voltage Vs or current. The pump cell includes a pump cell first electrode and a pump cell second electrode. The surface of the pump cell first electrode includes a noble metal region formed of a noble metal, a ceramic region, and a coexistence region in which the noble metal and the ceramic material coexist. The width of the coexistence region in an A region of the surface of the pump cell first electrode is greater than the width of the coexistence region in a B region of the surface. The A region is a region close to the reference cell first electrode, and the B region is a region located further away from the reference cell first electrode as compared with the A region.
    Type: Grant
    Filed: February 25, 2019
    Date of Patent: July 6, 2021
    Assignee: NGK Spark Plug Co., LTD.
    Inventors: Kentaro Kamada, Hitoshi Furuta, Satoshi Yamahara
  • Patent number: 11041823
    Abstract: A gas sensor (1) including: a sensor element (10) which includes a detection portion (11) and a heater (50); a metal shell (138); and a filled member (153) filled with a filling material between the metal shell and the sensor element, wherein a position at which change in a temperature of the sensor element is smallest when a disturbance is applied is a temperature reference position M, the filled member is positioned rearward of the temperature reference position, an overall axial length LT of the sensor element is not greater than 50 mm, an axial length LE from a rear end of the filled member to a rear end of the sensor element is not smaller than 13.5 mm, and an axial length LA from the temperature reference position to a front end of the filled member is greater than 5.0 mm and not greater than 11.5 mm.
    Type: Grant
    Filed: July 19, 2018
    Date of Patent: June 22, 2021
    Assignee: NGK SPARK PLUG CO., LTD.
    Inventors: Kentaro Kamada, Hitoshi Furuta, Masaki Nakagawa
  • Publication number: 20210088471
    Abstract: A sensor element (100) including a measurement chamber (89); a pump cell (83) including a solid electrolyte body (69), an inner electrode (101), and an outer electrode (99); and a reference cell (85). At least one electrode contains a noble metal and a component of the solid electrolyte body. In a cross section, the at least one electrode has a noble metal region (205), a solid electrolyte body region (203), and a coexistence region (207) in which the noble metal and the component of the solid electrolyte body coexist. Further, in the cross section, an area ratio SR of the coexistence region is not less than 15.5% and is less than 30%.
    Type: Application
    Filed: September 16, 2020
    Publication date: March 25, 2021
    Applicant: NGK SPARK PLUG CO., LTD.
    Inventors: Yosuke SUZUKI, Takumi Yamada, Hitoshi Furuta, Kentaro Kamada
  • Publication number: 20210080423
    Abstract: A sensor element (10) having a laminate structure, and extending in an axial direction AX, the sensor element including a first and second ceramic layers (118B, 115) disposed apart from each other in a laminating direction; a third ceramic layer (118) intervening between the first and second ceramic layers in the laminating direction and having a hollow space (10G) formed therein; and an internal space which is the hollow space surrounded by the first ceramic layer, the second ceramic layer, and the third ceramic layer, wherein, at a periphery (10f) of the internal space, a fourth ceramic layer (181) containing as a main component a ceramic material different from that contained as a main component in the first and third ceramic layers intervenes between the first ceramic layer and the third ceramic layer which are exposed to the internal space. Also disclosed is a method for manufacturing the gas sensor element.
    Type: Application
    Filed: August 27, 2020
    Publication date: March 18, 2021
    Applicant: NGK SPARK PLUG CO., LTD.
    Inventors: Hitoshi Furuta, Akinori Kojima
  • Patent number: 10921281
    Abstract: A gas sensor element configured to detect a first component and a second component of a measurement target gas comprises an element body portion, a first detection portion, a second detection portion with a porous region, and an element protection portion. The element protection portion covers the porous region and a region at the front side with respect to the porous region in a normal side face, and covers a part of a region at the front side with respect to the second detection portion without covering the second detection portion in a second detection side face. The element protection portion is formed so as not to cover the second detection portion but to cover the porous portion of the first detection portion.
    Type: Grant
    Filed: February 19, 2019
    Date of Patent: February 16, 2021
    Assignee: NGK Spark Plug Co., LTD.
    Inventors: Hitoshi Furuta, Tetsuo Yamada, Akinori Kojima
  • Patent number: 10852269
    Abstract: A gas sensor for detecting the concentration of a detection target gas in an atmosphere of interest is disposed on an electrically insulating member. The gas sensor includes an insulating porous layer formed of an electrically insulating porous material, a reference electrode, a solid electrolyte body, a detection electrode that are stacked in this order on the electrically insulating member, and a reference electrode lead disposed between the insulating member and the insulating porous layer. The insulating porous layer defines a through hole in a region sandwiched between the reference electrode lead and the reference electrode. An electrically conductive member formed of a material having electrical conductivity is disposed in the through hole so as to extend from an opening of the through hole at one end thereof to an opening of the through hole at the other end thereof.
    Type: Grant
    Filed: May 21, 2019
    Date of Patent: December 1, 2020
    Assignee: NGK SPARK PLUG CO., LTD.
    Inventors: Tetsuo Yamada, Hitoshi Furuta
  • Publication number: 20200340940
    Abstract: A sensor element (10) including: a measurement chamber (150); a pump cell (110) including a solid electrolyte (111), an inner electrode (113) exposed to the measurement chamber, and an outer electrode (112), the pump cell being configured to adjust an oxygen concentration in the measurement chamber; a diffusion resistance portion (151); and a detection cell (120) configured to measure a concentration of a specific gas in the measurement target gas after the adjustment of the oxygen concentration. The outer electrode is covered by a porous layer (114) and is disposed in a hollow space (10G) surrounded by a gas non-permeable dense layer 115, 118. The hollow space is in communication with an air introduction hole (10h) that is open on a rear side relative to the diffusion resistance portion. The outer electrode is exposed via the porous layer to air introduced through the air introduction hole.
    Type: Application
    Filed: April 20, 2020
    Publication date: October 29, 2020
    Applicant: NGK SPARK PLUG CO., LTD.
    Inventors: Hitoshi FURUTA, Kentaro Kamada, Akinori Kojima, Satoshi Yamahara, Akihiro Hara
  • Publication number: 20200319156
    Abstract: A NOx sensor element includes: a first pump cell configured to adjust an oxygen concentration in a first measurement chamber; a diffusion resistance portion configured to adjust a diffusion rate of a measurement target gas introduced into the first measurement chamber; and a second pump cell in which a pump current corresponding to a NOx concentration in the measurement target gas after the adjustment of the oxygen concentration, flows. The first pump cell includes: a first solid electrolyte; an inner pump electrode containing a noble metal, and exposed to the first measurement chamber; and an outer pump electrode containing a noble metal, and disposed outside the first measurement chamber. The outer pump electrode contains not less than 22% by mass of a main component of the first solid electrolyte.
    Type: Application
    Filed: March 30, 2020
    Publication date: October 8, 2020
    Applicant: NGK SPARK PLUG CO., LTD.
    Inventors: Kentaro KAMADA, Hitoshi FURUTA
  • Patent number: 10705045
    Abstract: A gas sensor element including a lead portion (79a) formed on a lower surface of an insulating member (76) and extending through a through hole (176) to an upper surface thereof, and a lead portion (79b) extending from the upper surface of the insulating member (76) through the through hole (176) to the lower surface of the insulating member (76) so as to cover the lead portion (79a) along the inner circumferential wall and a portion of the lower surface around the through hole. The lead portion (79a) has a section exposed to a space (230) on the lower surface side of the insulating member (76). The lead portion (79b) is disposed so as to face the insulating member (76) with the space (230) therebetween. The lead portion (79a) communicates with the outside through the space (230). Also disclosed is a method for producing the gas sensor element.
    Type: Grant
    Filed: August 1, 2017
    Date of Patent: July 7, 2020
    Assignee: NGK SPARK PLUG CO., LTD.
    Inventors: Akinori Kojima, Hitoshi Furuta
  • Patent number: 10684248
    Abstract: An NOx sensor includes a gas sensor element, a body member made of metal, and a protector made of metal. The body member is formed into a tubular shape extending in an axial direction and accommodates a gas sensor element internally of the same. The NOx sensor is formed into a tubular shape extending in the axial direction and includes an attachment member disposed such that a space extending in the axial direction is formed between the attachment member and the body member. The gas sensor element includes an oxygen concentration detection cell having an oxygen ion-conductive solid electrolyte layer and a detection electrode and a reference electrode formed on the solid electrolyte layer and forming a pair, and a heater for heating the oxygen concentration detection cell to a predetermined temperature. The oxygen concentration detection cell is disposed in the space.
    Type: Grant
    Filed: December 15, 2017
    Date of Patent: June 16, 2020
    Assignee: NGK Spark Plug Co., LTD.
    Inventors: Hitoshi Furuta, Masaki Nakagawa