Patents by Inventor Ho Suk Shin

Ho Suk Shin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240075853
    Abstract: An apparatus of tilting a seat cushion of a vehicle, includes a tilting motor, a pinion gear, a sector gear, and a tilting link which perform the tilting operation of the seat cushion and exert a binding force in a tilted state of the seat cushion and are provided to be connected to both of one side and the other side of a seat cushion frame, and has two sector gears positioned on left and right sides and connected to each other by a connection bar so that, by strengthening a binding force of the front portion of the seat cushion, it is possible to secure the safety of passengers in the event of a collision.
    Type: Application
    Filed: April 13, 2023
    Publication date: March 7, 2024
    Applicants: Hyundai Motor Company, Kia Corporation, DAS CO., LTD, Faurecia Korea, Ltd., Hyundai Transys Inc.
    Inventors: Sang Soo LEE, Mu Young KIM, Sang Hark LEE, Ho Suk JUNG, Sang Do PARK, Chan Ho JUNG, Dong Hoon LEE, Hea Yoon KANG, Deok Soo LIM, Seung Pil JANG, Seon Ho KIM, Jong Seok YUN, Hyo Jin KIM, Dong Gyu SHIN, Jin Ho SEO, Young Jun KIM, Taek Jun NAM
  • Patent number: 11908993
    Abstract: A solid electrolyte membrane and method of preparing, including a plurality of polymer filaments arranged crossed as a 3-dimensional structure in the form of a net of nonwoven fabric-like shape, and a plurality of inorganic solid electrolytes inserted and uniformly distributed in the structure. By this structural feature, a large amount of solid electrolyte particles are uniformly distributed and filled in the electrolyte membrane, contact between the particles is good, and ionic conduction paths are sufficiently provided. Additionally, the durability of the solid electrolyte membrane is improved by the 3-dimensional structure, and the flexibility and strength increase. The nonwoven fabric composite solid electrolyte membrane has an effect in preventing inorganic solid electrolyte particle from being disconnected therefrom.
    Type: Grant
    Filed: April 20, 2022
    Date of Patent: February 20, 2024
    Assignee: LG ENERGY SOLUTION, LTD.
    Inventors: Sung-Ju Cho, Ho-Suk Shin, Seung-He Woo, Sung-Joong Kang, Hyea-Eun Han
  • Patent number: 11855287
    Abstract: The present invention relates to a method of preparing a positive electrode active material precursor for a lithium secondary battery in which particle size uniformity and productivity may be improved by using three reactors, a method of preparing a positive electrode active material for a lithium secondary battery by using the above-prepared positive electrode active material precursor for a lithium secondary battery, and a positive electrode for a lithium secondary battery and a lithium secondary battery which include the above-prepared positive electrode active material for a lithium secondary battery.
    Type: Grant
    Filed: September 29, 2020
    Date of Patent: December 26, 2023
    Inventors: Ho Suk Shin, Won Tae Kim, Jong Yeol Yu, Young Geun Lim, Sun Sik Shin, Seoung Chul Ha
  • Patent number: 11631839
    Abstract: An electrode for a solid state battery is provided. The electrode active material layer of the electrode shows improved mechanical properties, such as elasticity or rigidity, of the electrode layer through the crosslinking of a binder resin. Thus, it is possible to inhibit or reduce the effect of swelling and/or shrinking of the electrode active material during charging/discharging. Therefore, the interfacial adhesion between the electrode active material layer and an electrolyte layer and the interfacial adhesion between the electrode active material layer and a current collector are maintained to a high level to provide a solid state battery having excellent cycle characteristics.
    Type: Grant
    Filed: March 22, 2018
    Date of Patent: April 18, 2023
    Assignee: LG ENERGY SOLUTION, LTD.
    Inventors: Sung-Ju Cho, Ho-Suk Shin, Seung-He Woo, Sung-Joong Kang, Hyea-Eun Han
  • Patent number: 11577969
    Abstract: Disclosed are a transition metal precursor for preparation of a lithium transition metal oxide, in which a ratio of tap density of the precursor to average particle diameter D50 of the precursor satisfies the condition represented by Equation 1 below, and a lithium transition metal oxide prepared using the same.
    Type: Grant
    Filed: February 11, 2014
    Date of Patent: February 14, 2023
    Inventors: Jinhyung Lim, Sung-Kyun Chang, Won Seok Chang, Sin Young Park, Ho Suk Shin, Hyun Jin Oh, Jung Min Han, In Sung Uhm, Wang Mo Jung, Dong Hun Lee
  • Publication number: 20220255117
    Abstract: A solid electrolyte membrane and method of preparing, including a plurality of polymer filaments arranged crossed as a 3-dimensional structure in the form of a net of nonwoven fabric-like shape, and a plurality of inorganic solid electrolytes inserted and uniformly distributed in the structure. By this structural feature, a large amount of solid electrolyte particles are uniformly distributed and filled in the electrolyte membrane, contact between the particles is good, and ionic conduction paths are sufficiently provided. Additionally, the durability of the solid electrolyte membrane is improved by the 3-dimensional structure, and the flexibility and strength increase. The nonwoven fabric composite solid electrolyte membrane has an effect in preventing inorganic solid electrolyte particle from being disconnected therefrom.
    Type: Application
    Filed: April 20, 2022
    Publication date: August 11, 2022
    Applicant: LG ENERGY SOLUTION, LTD.
    Inventors: Sung-Ju CHO, Ho-Suk SHIN, Seung-He WOO, Sung-Joong KANG, Hyea-Eun HAN
  • Publication number: 20220209232
    Abstract: The present invention relates to a method of preparing a positive electrode active material precursor for a lithium secondary battery in which particle size uniformity and productivity may be improved by using three reactors, a method of preparing a positive electrode active material for a lithium secondary battery by using the above-prepared positive electrode active material precursor for a lithium secondary battery, and a positive electrode for a lithium secondary battery and a lithium secondary battery which include the above-prepared positive electrode active material for a lithium secondary battery.
    Type: Application
    Filed: September 29, 2020
    Publication date: June 30, 2022
    Applicant: LG Chem, Ltd.
    Inventors: Ho Suk Shin, Won Tae Kim, Jong Yeol Yu, Young Geun Lim, Sun Sik Shin, Seoung Chul Ha
  • Patent number: 11342578
    Abstract: A solid electrolyte membrane and method of preparing, including a plurality of polymer filaments arranged crossed as a 3-dimensional structure in the form of a net of nonwoven fabric-like shape, and a plurality of inorganic solid electrolytes inserted and uniformly distributed in the structure. By this structural feature, a large amount of solid electrolyte particles are uniformly distributed and filled in the electrolyte membrane, contact between the particles is good, and ionic conduction paths are sufficiently provided. Additionally, the durability of the solid electrolyte membrane is improved by the 3-dimensional structure, and the flexibility and strength increase. The nonwoven fabric composite solid electrolyte membrane has an effect in preventing inorganic solid electrolyte particle from being disconnected therefrom.
    Type: Grant
    Filed: May 15, 2018
    Date of Patent: May 24, 2022
    Assignee: LG ENERGY SOLUTION, LTD.
    Inventors: Sung-Ju Cho, Ho-Suk Shin, Seung-He Woo, Sung-Joong Kang, Hyea-Eun Han
  • Publication number: 20220135428
    Abstract: Disclosed are a lithium transition metal oxide and a lithium secondary battery, in which a ratio of average particle diameter D50 of the lithium transition metal oxide to average particle diameter D50 of a transition metal precursor for preparation of the lithium transition metal oxide satisfies the condition represented by Equation 3 below: 0 < Average ? ? particle ? ? diameter ? ? D ? ? 50 ? ? of ? ? lithium ? ? transition ? metal ? ? oxide Average ? ? particle ? ? diameter ? ? D ? ? 50 ? ? of ? ? transition ? ? metal ? precursor < 1.2 .
    Type: Application
    Filed: January 19, 2022
    Publication date: May 5, 2022
    Applicant: LG Chem, Ltd.
    Inventors: Jinhyung Lim, Sung-Kyun Chang, Won Seok Chang, Sin Young Park, Ho Suk Shin, Hyun Jin Oh, Jung Min Han, In Sung Uhm, Wang Mo Jung, Dong Hun Lee
  • Publication number: 20220106199
    Abstract: A method for preparing a positive electrode active material is provided. The method includes a first step for adding, to a reactor, a reaction solution including a transition metal-containing solution containing at least one among nickel, cobalt, and manganese, an ammonium ion-containing solution, and a basic aqueous solution to form seeds of precursor particles; a second step for preparing carbon-introduced precursor particles by adding a carbon source to the reactor when the precursor particles grow until the average particle diameter (D50) is 30% in size of the average particle diameter (D50) of the finally prepared precursor particles; and a third step for mixing the carbon-introduced precursor particles and a lithium raw material and sintering the mixture at a temperature of 750° C. to 950° C. to prepare positive electrode active material particles.
    Type: Application
    Filed: September 29, 2020
    Publication date: April 7, 2022
    Applicant: LG Chem, Ltd.
    Inventors: Ho Suk Shin, Won Tae Kim, Jong Yeol Yu, Young Geun Lim, Sun Sik Shin, Seoung Chul Ha
  • Patent number: 11069895
    Abstract: An electrode assembly for a solid state battery includes a positive electrode, a negative electrode and a solid electrolyte layer interposed between the positive electrode and the negative electrode. In addition, the binder disposed at the interface between the negative electrode and the solid electrolyte layer, the interface between the positive electrode and the solid electrolyte layer and/or at a predetermined depth from the interface is crosslinked to form a three-dimensional network. In other words, in the electrode assembly, the binder contained in the negative electrode and the solid electrolyte layer and/or the binder contained in the positive electrode and the solid electrolyte layer is crosslinked to improve the interfacial binding force between the negative electrode and the solid electrolyte layer and/or between the positive electrode and the solid electrolyte layer, and thus ion conductivity is maintained to a significantly high level.
    Type: Grant
    Filed: March 16, 2018
    Date of Patent: July 20, 2021
    Assignee: LG CHEM, LTD.
    Inventors: Sung-Ju Cho, Ho-Suk Shin, Seung-He Woo, Sung-Joong Kang, Hyea-Eun Han
  • Patent number: 10910630
    Abstract: An electrode for an all solid type battery is designed such that fibrous carbon materials serving as a conductor are densely arranged crossed into a 3-dimensional structure in the form of a mesh of a nonwoven fabric-like shape, and an inorganic solid electrolyte and electrode active material particles are impregnated and uniformly dispersed in the structure. By this structural feature, the electrode for an all solid type battery has very good electron conductivity and ionic conductivity.
    Type: Grant
    Filed: May 15, 2018
    Date of Patent: February 2, 2021
    Assignee: LG CHEM, LTD.
    Inventors: Sung-Ju Cho, Ho-Suk Shin, Seung-He Woo, Sung-Joong Kang, Hyea-Eun Han
  • Patent number: 10868285
    Abstract: The present invention provides a battery cell including: an electrode assembly configured of a positive electrode, a negative electrode, and a separation membrane; and a battery case in which a sealing surplus part is formed at an external circumference in a state that the electrode assembly is built in a receiving unit, wherein the battery case is formed of a sheet-shaped structure having a first surface and a second surface opposite to the first surface, an electrode terminal of the sheet-shaped structure is protruded through one side sealing surplus part of the battery case, and the electrode terminal is in contact with one surface or the other surface opposite to the one surface of the sealing surplus part in a state that the electrode terminal is bent in the first surface direction or the second surface direction of the battery case at the protrude part.
    Type: Grant
    Filed: September 20, 2016
    Date of Patent: December 15, 2020
    Assignee: LG CHEM, LTD.
    Inventors: Min Kyu You, Ho Suk Shin, Hong Kyu Park
  • Patent number: 10811676
    Abstract: Provided is a precursor of transition metal oxide represented by chemical formula 1 below.
    Type: Grant
    Filed: November 2, 2015
    Date of Patent: October 20, 2020
    Assignee: LG Chem, Ltd.
    Inventors: Ho-Suk Shin, Byung-Chun Park, Jae-Hyun Lee
  • Patent number: 10763507
    Abstract: The present invention provides a precursor for the production of a positive electrode active material for a secondary battery comprising: a core composed of transition metal hydroxides including nickel(Ni) and manganese(Mn) and further including anions other than hydroxyl groups(OH), or transition metal hydroxides including nickel(Ni), manganese(Mn) and cobalt(Co) and further including anions other than hydroxyl groups(OH); and a shell composed of transition metal hydroxides including cobalt(Co) and further including anions other than hydroxyl groups(OH), and a positive electrode active material for lithium secondary battery produced using the same.
    Type: Grant
    Filed: September 9, 2016
    Date of Patent: September 1, 2020
    Assignee: LG Chem, Ltd.
    Inventors: Min Kyu You, Ho Suk Shin
  • Patent number: 10741872
    Abstract: The present invention provides a positive electrode active material for a lithium secondary battery having a core-shell structure which comprises: a core composed of lithium transition metal oxides including nickel(Ni), manganese(Mn) and cobalt(Co); and a shell composed of lithium transition metal oxides including cobalt(Co), wherein an inorganic material layer is further formed by coating on the surface of the shell.
    Type: Grant
    Filed: September 20, 2016
    Date of Patent: August 11, 2020
    Assignee: LG Chem, Ltd.
    Inventors: Min Kyu You, Ho Suk Shin, Hong Kyu Park
  • Patent number: 10658656
    Abstract: Disclosed herein is a high voltage cathode active material and a method for preparing the same. The cathode active material includes particles of a spinel-type compound having a composition represented by Formula (1) and a carbon-based material present on surfaces of the particles of the spinel-type compound: Li1+aMxMn2?xO4?zAz??(1) where ?0.1?a?0.1, 0.3?x?0.8 and 0?z?0.1.
    Type: Grant
    Filed: November 24, 2014
    Date of Patent: May 19, 2020
    Assignee: LG Chem, Ltd.
    Inventors: Byung Chun Park, Seong Hoon Kang, Minsuk Kang, Wang Mo Jung, Ho Suk Shin, Sang Min Park, Geungi Min
  • Patent number: 10608251
    Abstract: The present disclosure relates to a positive electrode active material which reduces lithium by-products and improves structural stability and includes a lithium-nickel based transition metal composite oxide in which an alkaline earth metal having oxidation number of +2 is doped and a phosphate coated layer formed on the outer surface of the composite oxide. Accordingly, a second battery including the positive electrode active material has excellent capacity characteristics, and also improves structural stability during charging/discharging and prevents swelling, thereby being capable of exhibiting excellent life characteristics. Therefore, the present invention may be easily applied to industry in need thereof, and particularly to electric vehicles industry requiring high capacity and long-term life characteristics.
    Type: Grant
    Filed: February 26, 2015
    Date of Patent: March 31, 2020
    Assignee: LG Chem, Ltd.
    Inventors: Jin Hyung Lim, Ho Suk Shin, Dong Hun Lee, Hyun Jin Oh, Joo Hong Jin, Wang Mo Jung
  • Patent number: 10581071
    Abstract: The present invention provides a precursor for the production of positive electrode active material for a secondary battery comprising: a core containing transition metal hydroxides comprising nickel (Ni) and manganese (Mn), or transition metal hydroxides comprising nickel (Ni), manganese (Mn) and cobalt (Co); and a shell containing transition metal hydroxides comprising cobalt (Co), and a positive electrode active material produced using the same.
    Type: Grant
    Filed: September 13, 2016
    Date of Patent: March 3, 2020
    Assignee: LG Chem, Ltd.
    Inventors: Min Kyu You, Ho Suk Shin, Hong Kyu Park
  • Patent number: 10529985
    Abstract: Provided are a method of preparing a cathode active material including coating a surface of a lithium transition metal oxide with a lithium boron oxide by dry mixing the lithium transition metal oxide and a boron-containing compound and performing a heat treatment, and a cathode active material prepared thereby. A method of preparing a cathode active material according to an embodiment of the present invention may easily transform lithium impurities present in a lithium transition metal oxide into a structurally stable lithium boron oxide by performing a heat treatment near the melting point of a boron-containing compound. Also, a coating layer may be formed in which the lithium boron oxide is uniformly coated in an amount proportional to the used amount of the boron-containing compound even at a low heat treatment temperature.
    Type: Grant
    Filed: August 8, 2018
    Date of Patent: January 7, 2020
    Assignee: LG Chem, Ltd.
    Inventors: Hyun Jin Oh, Ho Suk Shin, Jin Hyung Lim, Dong Hun Lee, Joo Hong Jin, Wang Mo Jung