Patents by Inventor Ho Wai Howard LEE

Ho Wai Howard LEE has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230168427
    Abstract: The present disclosure provides an optical waveguide design of a fiber modified with a thin layer of epsilon-near-zero (ENZ) material. The design results in an excitation of a highly confined waveguide mode in the fiber near the wavelength where permittivity of thin layer approaches zero. Due to the high field confinement within thin layer, the ENZ mode can be characterized by a peak in modal loss of the hybrid waveguide. Results show that such in-fiber excitation of ENZ mode is due to the coupling of the guided fundamental core mode to the thin-film ENZ mode. The phase matching wavelength, where the coupling takes place, varies depending on the refractive index of the constituents. These ENZ nanostructured optical fibers have many potential applications, for example, in ENZ nonlinear and magneto-optics, as in-fiber wavelength-dependent filters, and as subwavelength fluid channel for optical and bio-photonic sensing.
    Type: Application
    Filed: August 31, 2022
    Publication date: June 1, 2023
    Applicant: Baylor University
    Inventors: Ho Wai Howard LEE, Khant MINN, Jingyi YANG, Oleksiy ANOPCHENKO
  • Publication number: 20230111294
    Abstract: The present disclosure provides devices, systems, circuits, and effective methods for advanced optical applications using plasmonics and ENZ materials. The disclosure provides for enhancement of the optical tunability of phase and amplitude of propagating plasmons, nonlinear-optical effects, and resonant network in optical fiber tip nanocircuits and integrates the tunable plasmonic and ENZ effects for in-fiber applications to provide optical fiber with high operating speed and low power consumption. The invention yields efficient coupling of a plasmonic functional nanocircuit on the facet of an optical fiber core. The invention also can use gate-tunable ENZ materials to electrically and nonlinear optically tune the plasmonic nanocircuits for advanced light manipulation. The invention efficiently integrates and manipulates the voltage-tuned ENZ resonance for phase and amplitude modulation in optical fiber nanocircuits.
    Type: Application
    Filed: October 18, 2022
    Publication date: April 13, 2023
    Applicant: Baylor University
    Inventor: Ho Wai Howard LEE
  • Patent number: 11525959
    Abstract: The present disclosure provides devices, systems, circuits, and effective methods for advanced optical applications using plasmonics and ENZ materials. The disclosure provides for enhancement of the optical tunability of phase and amplitude of propagating plasmons, nonlinear-optical effects, and resonant network in optical fiber tip nanocircuits and integrates the tunable plasmonic and ENZ effects for in-fiber applications to provide optical fiber with high operating speed and low power consumption. The invention yields efficient coupling of a plasmonic functional nanocircuit on the facet of an optical fiber core. The invention also can use gate-tunable ENZ materials to electrically and nonlinear optically tune the plasmonic nanocircuits for advanced light manipulation. The invention efficiently integrates and manipulates the voltage-tuned ENZ resonance for phase and amplitude modulation in optical fiber nanocircuits.
    Type: Grant
    Filed: May 28, 2021
    Date of Patent: December 13, 2022
    Assignee: Baylor University
    Inventor: Ho Wai Howard Lee
  • Patent number: 11448820
    Abstract: The present disclosure provides an optical waveguide design of a fiber modified with a thin layer of epsilon-near-zero (ENZ) material. The design results in an excitation of a highly confined waveguide mode in the fiber near the wavelength where permittivity of thin layer approaches zero. Due to the high field confinement within thin layer, the ENZ mode can be characterized by a peak in modal loss of the hybrid waveguide. Results show that such in-fiber excitation of ENZ mode is due to the coupling of the guided fundamental core mode to the thin-film ENZ mode. The phase matching wavelength, where the coupling takes place, varies depending on the refractive index of the constituents. These ENZ nanostructured optical fibers have many potential applications, for example, in ENZ nonlinear and magneto-optics, as in-fiber wavelength-dependent filters, and as subwavelength fluid channel for optical and bio-photonic sensing.
    Type: Grant
    Filed: February 3, 2020
    Date of Patent: September 20, 2022
    Assignee: Baylor University
    Inventors: Ho Wai Howard Lee, Khant Minn, Jingyi Yang, Oleksiy Anopchenko
  • Publication number: 20210373242
    Abstract: The present disclosure provides devices, systems, circuits, and effective methods for advanced optical applications using plasmonics and ENZ materials. The disclosure provides for enhancement of the optical tunability of phase and amplitude of propagating plasmons, nonlinear-optical effects, and resonant network in optical fiber tip nanocircuits and integrates the tunable plasmonic and ENZ effects for in-fiber applications to provide optical fiber with high operating speed and low power consumption. The invention yields efficient coupling of a plasmonic functional nanocircuit on the facet of an optical fiber core. The invention also can use gate-tunable ENZ materials to electrically and nonlinear optically tune the plasmonic nanocircuits for advanced light manipulation. The invention efficiently integrates and manipulates the voltage-tuned ENZ resonance for phase and amplitude modulation in optical fiber nanocircuits.
    Type: Application
    Filed: May 28, 2021
    Publication date: December 2, 2021
    Applicant: Baylor University
    Inventor: Ho Wai Howard LEE
  • Patent number: 10838129
    Abstract: The present disclosure provides a system and method for an ultrathin optical metasurface with an array patterning formed on an optical fiber facet that enables manipulation of light passing therethrough, such as focusing and steering the light, and controlling a polarization state of light. The patterning can be non-uniform to selectively direct light passing through the metasurface. Array structures can vary in size, angle, shapes, and other non-uniform aspects. Further, the array can include materials that can be electrically activated and controlled to variably tune the metasurface characteristics for increased ability to manipulate the light passing therethrough. The materials can include a conductor, a dielectric, or a composite of a conductor, insulator, and dielectric formed on the optical fiber.
    Type: Grant
    Filed: June 18, 2019
    Date of Patent: November 17, 2020
    Assignee: Baylor University
    Inventors: Ho Wai Howard Lee, Jingyi Yang, Indra Ghimire
  • Publication number: 20200284975
    Abstract: The present disclosure provides an optical waveguide design of a fiber modified with a thin layer of epsilon-near-zero (ENZ) material. The design results in an excitation of a highly confined waveguide mode in the fiber near the wavelength where permittivity of thin layer approaches zero. Due to the high field confinement within thin layer, the ENZ mode can be characterized by a peak in modal loss of the hybrid waveguide. Results show that such in-fiber excitation of ENZ mode is due to the coupling of the guided fundamental core mode to the thin-film ENZ mode. The phase matching wavelength, where the coupling takes place, varies depending on the refractive index of the constituents. These ENZ nanostructured optical fibers have many potential applications, for example, in ENZ nonlinear and magneto-optics, as in-fiber wavelength-dependent filters, and as subwavelength fluid channel for optical and bio-photonic sensing.
    Type: Application
    Filed: February 3, 2020
    Publication date: September 10, 2020
    Applicant: Baylor University
    Inventors: Ho Wai Howard LEE, Khant MINN, Jingyi YANG, Oleksiy ANOPCHENKO
  • Patent number: 10698134
    Abstract: The present disclosure provides a system and method for a tunable ENZ material that can vary the absorption of radiant energy. The tunable ENZ material can act as a broadband absorber advantageously using a stack of ultrathin conducting layers having an epsilon-near-zero (ENZ) regime of permittivity at different wavelengths. The conducting materials can include at least partially transparent conducting oxide or transition metal nitride layers with different electron concentrations and hence different ENZ frequencies for a broadband range of energy absorption. The layer(s) can be directly tuned to various frequencies to achieve high levels of absorption at deep subwavelength ENZ thicknesses. An applied electric bias can create electron accumulation/depletion regions in an ENZ semiconductor device and allows control of plasma frequency and hence high levels of absorption in the device. Further, for a stack of layers, the carrier concentration can be altered from layer to layer.
    Type: Grant
    Filed: May 11, 2018
    Date of Patent: June 30, 2020
    Assignee: Baylor University
    Inventors: Oleksiy Anopchenko, Ho Wai Howard Lee
  • Publication number: 20190383982
    Abstract: The present disclosure provides a system and method for an ultrathin optical metasurface with an array patterning formed on an optical fiber facet that enables manipulation of light passing therethrough, such as focusing and steering the light, and controlling a polarization state of light. The patterning can be non-uniform to selectively direct light passing through the metasurface. Array structures can vary in size, angle, shapes, and other non-uniform aspects. Further, the array can include materials that can be electrically activated and controlled to variably tune the metasurface characteristics for increased ability to manipulate the light passing therethrough. The materials can include a conductor, a dielectric, or a composite of a conductor, insulator, and dielectric formed on the optical fiber.
    Type: Application
    Filed: June 18, 2019
    Publication date: December 19, 2019
    Applicant: BAYLOR UNIVERSITY
    Inventors: Ho Wai Howard Lee, Jingyi Yang, Indra Ghimire
  • Patent number: 10145799
    Abstract: The present disclosure provides a system and method for a fiber-coupled, metal-tip chemical imaging spectroscopy. The system couples the electromagnetic radiation (EMR), such as laser light, through an optical fiber to a conductive tip for both EMR excitation to the sample through the conductive tip and EMR signal collection from the sample through the conductive tip. The system and method effectively eliminates the need for an optical alignment between the EMR source and the tip, and still offers the customary spatial resolution of a non-coupled system.
    Type: Grant
    Filed: February 22, 2018
    Date of Patent: December 4, 2018
    Assignee: Baylor University
    Inventors: Zhenrong Zhang, Blake Birmingham, Ho Wai Howard Lee
  • Publication number: 20180329114
    Abstract: The present disclosure provides a system and method for a tunable ENZ material that can vary the absorption of radiant energy. The tunable ENZ material can act as a broadband absorber advantageously using a stack of ultrathin conducting layers having an epsilon-near-zero (ENZ) regime of permittivity at different wavelengths. The conducting materials can include at least partially transparent conducting oxide or transition metal nitride layers with different electron concentrations and hence different ENZ frequencies for a broadband range of energy absorption. The layer(s) can be directly tuned to various frequencies to achieve high levels of absorption at deep subwavelength ENZ thicknesses. An applied electric bias can create electron accumulation/depletion regions in an ENZ semiconductor device and allows control of plasma frequency and hence high levels of absorption in the device. Further, for a stack of layers, the carrier concentration can be altered from layer to layer.
    Type: Application
    Filed: May 11, 2018
    Publication date: November 15, 2018
    Applicant: BAYLOR UNIVERSITY
    Inventors: Oleksiy Anopchenko, Ho Wai Howard Lee
  • Publication number: 20180238806
    Abstract: The present disclosure provides a system and method for a fiber-coupled, metal-tip chemical imaging spectroscopy. The system couples the electromagnetic radiation (EMR), such as laser light, through an optical fiber to a conductive tip for both EMR excitation to the sample through the conductive tip and EMR signal collection from the sample through the conductive tip. The system and method effectively eliminates the need for an optical alignment between the EMR source and the tip, and still offers the customary spatial resolution of a non-coupled system.
    Type: Application
    Filed: February 22, 2018
    Publication date: August 23, 2018
    Applicant: BAYLOR UNIVERSITY
    Inventors: Zhenrong ZHANG, Blake BIRMINGHAM, Ho Wai Howard LEE