Patents by Inventor Hoa D. Truong

Hoa D. Truong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10915023
    Abstract: A crosslinked self-assembled monolayer (SAM), comprising surface groups containing a nitrogen-heterocycle, was formed on an oxygen plasma-treated silicon oxide or hafnium oxide top surface of a substrate. The SAM is covalently bound to the underlying oxide layer. The SAM was patterned by direct write methods using ultraviolet (UV) light of wavelength 193 nm or an electron beam, forming a line-space pattern comprising non-exposed SAM features. The non-exposed SAM features non-covalently bound DNA-wrapped carbon nanotubes (DNA-CNT) deposited from aqueous solution with a selective placement efficiency of about 90%. Good alignment of carbon nanotubes to the long axis of the SAM features was also observed. The resulting patterned biopolymer features were used to prepare a CNT based field effect transistor.
    Type: Grant
    Filed: November 3, 2017
    Date of Patent: February 9, 2021
    Assignee: International Business Machines Corporation
    Inventors: Shu-Jen Han, Brian Lin, Hareem T. Maune, Charles T. Rettner, Linda K. Sundberg, Leslie E. Thompson, Hoa D. Truong
  • Publication number: 20190137879
    Abstract: A crosslinked self-assembled monolayer (SAM), comprising surface groups containing a nitrogen-heterocycle, was formed on an oxygen plasma-treated silicon oxide or hafnium oxide top surface of a substrate. The SAM is covalently bound to the underlying oxide layer. The SAM was patterned by direct write methods using ultraviolet (UV) light of wavelength 193 nm or an electron beam, forming a line-space pattern comprising non-exposed SAM features. The non-exposed SAM features non-covalently bound DNA-wrapped carbon nanotubes (DNA-CNT) deposited from aqueous solution with a selective placement efficiency of about 90%. Good alignment of carbon nanotubes to the long axis of the SAM features was also observed. The resulting patterned biopolymer features were used to prepare a CNT based field effect transistor.
    Type: Application
    Filed: November 3, 2017
    Publication date: May 9, 2019
    Inventors: Shu-Jen Han, Brian Lin, Hareem T. Maune, Charles T. Rettner, Linda K. Sundberg, Leslie E. Thompson, Hoa D. Truong, Willi Volksen
  • Patent number: 9983475
    Abstract: Non-ionic photo-acid generating (PAG) compounds were prepared that contain an aryl ketone group having a perfluorinated substituent alpha to the ketone carbonyl. The non-polymeric PAGs release a sulfonic acid when exposed to high energy radiation such as deep UV or extreme UV light. The photo-generated sulfonic acid has a low diffusion rate in an exposed resist layer subjected to a post-exposure bake (PEB) at 100° C. to 150° C., resulting in formation of good line patterns after development. At higher temperatures, the PAGs can also undergo a thermal reaction to form a sulfonic acid. The perfluorinated substituent provides improved thermal stability and hydrolytic/nucleophilic stability.
    Type: Grant
    Filed: August 12, 2016
    Date of Patent: May 29, 2018
    Assignees: International Business Machines Corporation, Central Glass Co., Ltd.
    Inventors: Takehisa Ishimaru, Satoru Narizuka, Daniel P. Sanders, Ratnam Sooriyakumaran, Hoa D. Truong, Rudy J. Wojtecki
  • Patent number: 9950999
    Abstract: Non-ionic photo-acid generating (PAG) compounds were prepared that contain an aryl ketone group. The disclosed non-polymeric PAGs release a strong sulfonic acid when exposed to high energy radiation such as deep UV or extreme UV light. The photo-generated sulfonic acid has a low diffusion rate in an exposed resist layer subjected to a post-exposure bake (PEB) at 100° C. to 150° C., resulting in formation of good line patterns after development. At higher temperatures, the PAGs undergo a thermal reaction to form a sulfonic acid.
    Type: Grant
    Filed: August 12, 2016
    Date of Patent: April 24, 2018
    Assignees: International Business Machines Corporation, Central Glass Co., Ltd.
    Inventors: Takehisa Ishimaru, Satoru Narizuka, Daniel P. Sanders, Ratnam Sooriyakumaran, Hoa D. Truong, Rudy J. Wojtecki
  • Patent number: 9951164
    Abstract: Non-ionic photo-acid generating (PAG) polymerizable monomers were prepared that contain a side chain sulfonate ester of an alpha-hydroxy aryl ketone. The aryl ketone group has a perfluorinated substituent alpha to the ketone carbonyl. The sulfur of the sulfonate ester is also directly linked to a fluorinated group. PAG polymers prepared from the PAG monomers release a strong sulfonic acid when exposed to high energy radiation such as deep UV or extreme UV light. The photo-generated sulfonic acid has a low diffusion rate in an exposed resist layer subjected to a post-exposure bake (PEB) at 100° C. to 150° C., resulting in formation of good line patterns after development.
    Type: Grant
    Filed: August 12, 2016
    Date of Patent: April 24, 2018
    Assignees: International Business Machines Corporation, Central Glass Co., Ltd.
    Inventors: Takehisa Ishimaru, Satoru Narizuka, Daniel P. Sanders, Ratnam Sooriyakumaran, Hoa D. Truong, Rudy J. Wojtecki
  • Publication number: 20180044459
    Abstract: Non-ionic photo-acid generating (PAG) polymerizable monomers were prepared that contain a side chain sulfonate ester of an alpha-hydroxy aryl ketone. The aryl ketone group has a perfluorinated substituent alpha to the ketone carbonyl. The sulfur of the sulfonate ester is also directly linked to a fluorinated group. PAG polymers prepared from the PAG monomers release a strong sulfonic acid when exposed to high energy radiation such as deep UV or extreme UV light. The photo-generated sulfonic acid has a low diffusion rate in an exposed resist layer subjected to a post-exposure bake (PEB) at 100° C. to 150° C., resulting in formation of good line patterns after development.
    Type: Application
    Filed: August 12, 2016
    Publication date: February 15, 2018
    Inventors: Takehisa Ishimaru, Satoru Narizuka, Daniel P. Sanders, Ratnam Sooriyakumaran, Hoa D. Truong, Rudy J. Wojtecki
  • Publication number: 20180046077
    Abstract: Non-ionic photo-acid generating (PAG) compounds were prepared that contain an aryl ketone group having a perfluorinated substituent alpha to the ketone carbonyl. The non-polymeric PAGs release a sulfonic acid when exposed to high energy radiation such as deep UV or extreme UV light. The photo-generated sulfonic acid has a low diffusion rate in an exposed resist layer subjected to a post-exposure bake (PEB) at 100° C. to 150° C., resulting in formation of good line patterns after development. At higher temperatures, the PAGs can also undergo a thermal reaction to form a sulfonic acid. The perfluorinated substituent provides improved thermal stability and hydrolytic/nucleophilic stability.
    Type: Application
    Filed: August 12, 2016
    Publication date: February 15, 2018
    Inventors: Takehisa Ishimaru, Satoru Narizuka, Daniel P. Sanders, Ratnam Sooriyakumaran, Hoa D. Truong, Rudy J. Wojtecki
  • Publication number: 20180044284
    Abstract: Non-ionic photo-acid generating (PAG) compounds were prepared that contain an aryl ketone group. The disclosed non-polymeric PAGs release a strong sulfonic acid when exposed to high energy radiation such as deep UV or extreme UV light. The photo-generated sulfonic acid has a low diffusion rate in an exposed resist layer subjected to a post-exposure bake (PEB) at 100° C. to 150° C., resulting in formation of good line patterns after development. At higher temperatures, the PAGs undergo a thermal reaction to form a sulfonic acid.
    Type: Application
    Filed: August 12, 2016
    Publication date: February 15, 2018
    Inventors: Takehisa Ishimaru, Satoru Narizuka, Daniel P. Sanders, Ratnam Sooriyakumaran, Hoa D. Truong, Rudy J. Wojtecki
  • Patent number: 9879152
    Abstract: Block copolymers (BCPs) for self-assembly applications comprise a linear fluorinated linking group L? joining a pair of adjacent blocks. A film layer comprising a BCP, which is disposed on an underlayer and in contact with an atmosphere, is capable of forming a perpendicularly oriented domain pattern when the underlayer is preferentially wetted by one domain of an otherwise identical self-assembled BCP in which all fluorines of L? are replaced by hydrogen. The BCP can be a low-chi or high-chi BCP. In a preferred embodiment, the BCP comprises a styrene-based first block, and a second block comprises a carbonate and/or ester repeat unit formed by ring opening polymerization of a cyclic carbonate and/or cyclic ester monomer. The linking group L? has a lower surface energy than each of the polymer blocks.
    Type: Grant
    Filed: October 21, 2015
    Date of Patent: January 30, 2018
    Assignee: International Business Machines Corporation
    Inventors: Noel Arellano, Joy Cheng, Teddie P. Magbitang, Jed W. Pitera, Daniel P. Sanders, Kristin Schmidt, Hoa D. Truong, Ankit Vora
  • Patent number: 9851639
    Abstract: A photoacid generating polymer (PAG polymer) comprises i) a first repeat unit of capable of reacting with a photogenerated acid to form a carboxylic acid containing repeat unit, ii) a second repeat unit of capable of forming the photogenerated acid, and iii) a third repeat unit comprising a norbornyl ester, wherein a norbornyl ring of the norbornyl ester comprises a monovalent substituent having the formula *-L?-C(CF3)2(OH). L? is a divalent linking group comprising at least one carbon and the starred bond of L? is linked to the norbornyl ring. The first repeat unit, second repeat unit, and the third repeat unit are covalently bound repeat units of the PAG polymer.
    Type: Grant
    Filed: March 31, 2012
    Date of Patent: December 26, 2017
    Assignees: International Business Machines Corporation, Central Glass Co., Ltd.
    Inventors: Robert David Allen, Phillip Joe Brock, Masaki Fujiwara, Kazuhiko Maeda, Hoa D. Truong
  • Patent number: 9671694
    Abstract: A layered structure includes a substrate; an underlayer including a reversibly crosslinked polymer and/or oligomer interconnected by ester functionalities; a silicon-containing mask overlaying the underlayer; and a photoresist overlaying the silicon-containing hardmask layer. Also described are multilayer lithographic processes and processes of forming the underlayer, which generally includes coating an underlayer composition onto a surface of the substrate at a thickness effective to provide a planar upper surface, wherein the underlayer composition includes a polymer including terminal alcohol groups, a multifunctional anhydride, and a solvent. The underlayer composition is heated to a temperature to effect a crosslinking reaction between the multifunctional anhydride and the terminal alcohol groups to form the ester functionalities, which can be selectively removed (reversibly crosslinked) using a wet etchant.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: June 6, 2017
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Martin Glodde, Ratnam Sooriyakumaran, Seiichiro Tachibana, Hoa D. Truong
  • Publication number: 20170114246
    Abstract: Block copolymers (BCPs) for self-assembly applications comprise a linear fluorinated linking group L? joining a pair of adjacent blocks. A film layer comprising a BCP, which is disposed on an underlayer and in contact with an atmosphere, is capable of forming a perpendicularly oriented domain pattern when the underlayer is preferentially wetted by one domain of an otherwise identical self-assembled BCP in which all fluorines of L? are replaced by hydrogen. The BCP can be a low-chi or high-chi BCP. In a preferred embodiment, the BCP comprises a styrene-based first block, and a second block comprises a carbonate and/or ester repeat unit formed by ring opening polymerization of a cyclic carbonate and/or cyclic ester monomer. The linking group L? has a lower surface energy than each of the polymer blocks.
    Type: Application
    Filed: October 21, 2015
    Publication date: April 27, 2017
    Inventors: Noel Arellano, Joy Cheng, Teddie P. Magbitang, Jed W. Pitera, Daniel P. Sanders, Kristin Schmidt, Hoa D. Truong, Ankit Vora
  • Patent number: 9389516
    Abstract: A process and composition for negative tone development comprises providing a photoresist film that generates acidic sites. Irradiating the photoresist film patternwise provides an irradiated film having exposed and unexposed regions where the exposed regions comprise imaged sites. Baking the irradiated film at elevated temperatures produces a baked-irradiated film comprising the imaged sites which after irradiating, baking, or both irradiating and baking comprise acidic imaged sites. Treating the baked-irradiated film with a liquid, gaseous or vaporous weakly basic compound converts the acidic imaged sites to a base treated film having chemically modified acidic imaged sites. Applying a solvent developer substantially dissolves regions of the film that have not been exposed to the radiant energy, where the solvent developer comprises a substantial non-solvent for the chemically modified acidic imaged sites.
    Type: Grant
    Filed: March 3, 2015
    Date of Patent: July 12, 2016
    Assignee: International Business Machines Corporation
    Inventors: Luisa D. Bozano, Dario L. Goldfarb, Linda K. Sundberg, Hoa D. Truong, Hsinyu Tsai, Gregory M. Walraff
  • Patent number: 9244345
    Abstract: Photo-acid generating vinyl polymerizable monomers (PAG monomers) were prepared comprising sulfonate ester groups of N-hydroxide imides. The photo-acid generating portion of the PAG monomer is linked to a polymerizable portion of the monomer by an amide linking group. Photo-acid generating polymers (PAG polymers) of the PAG monomers show high sensitivity to extreme ultraviolet radiation (13.5 nm) and much less sensitivity to far ultraviolet wavelengths (193 nm, 248 nm). The PAG polymers also exhibit thermal and chemical amplification properties useful for forming high resolution positive tone or negative tone lithographic resist patterns.
    Type: Grant
    Filed: November 6, 2014
    Date of Patent: January 26, 2016
    Assignees: International Business Machines Corporation, Central Glass Co., LTD.
    Inventors: Takehisa Ishimaru, Satoru Narizuka, Daniel P. Sanders, Ratnam Sooriyakumaran, Hoa D. Truong, Rudy J. Wojtecki, Manabu Yasumoto
  • Publication number: 20150309415
    Abstract: A process and composition for negative tone development comprises providing a photoresist film that generates acidic sites. Irradiating the photoresist film patternwise provides an irradiated film having exposed and unexposed regions where the exposed regions comprise imaged sites. Baking the irradiated film at elevated temperatures produces a baked-irradiated film comprising the imaged sites which after irradiating, baking, or both irradiating and baking comprise acidic imaged sites. Treating the baked-irradiated film with a liquid, gaseous or vaporous weakly basic compound converts the acidic imaged sites to a base treated film having chemically modified acidic imaged sites. Applying a solvent developer substantially dissolves regions of the film that have not been exposed to the radiant energy, where the solvent developer comprises a substantial non-solvent for the chemically modified acidic imaged sites.
    Type: Application
    Filed: March 3, 2015
    Publication date: October 29, 2015
    Applicant: International Business Machines Corporation
    Inventors: LUISA D. BOZANO, DARIO L. GOLDFARB, LINDA K. SUNDBERG, HOA D. TRUONG, HSINYU TSAI, GREGORY M. WALRAFF
  • Patent number: 9057960
    Abstract: A process and composition for negative tone development comprises providing a photoresist film that generates acidic sites. Irradiating the photoresist film patternwise provides an irradiated film having exposed and unexposed regions where the exposed regions comprise imaged sites. Baking the irradiated film at elevated temperatures produces a baked-irradiated film comprising the imaged sites which after irradiating, baking, or both irradiating and baking comprise acidic imaged sites. Treating the baked-irradiated film with a liquid, gaseous or vaporous weakly basic compound converts the acidic imaged sites to a base treated film having chemically modified acidic imaged sites. Applying a solvent developer substantially dissolves regions of the film that have not been exposed to the radiant energy, where the solvent developer comprises a substantial non-solvent for the chemically modified acidic imaged sites.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: June 16, 2015
    Assignee: International Business Machines Corporation
    Inventors: Luisa D. Bozano, Dario L. Goldfarb, Linda K. Sundberg, Hoa D. Truong, Hsinyu Tsai, Gregory M. Wallraff
  • Patent number: 9057951
    Abstract: Photoresist compositions include a blend of a phenolic polymer with a (meth)acrylate-based copolymer free of ether-containing and/or carboxylic acid-containing moieties. The (meth)acrylate copolymer includes a first monomer selected from the group consisting of an alkyl acrylate, a substituted alkyl acrylate, an alkyl (meth)acrylate, a substituted alkyl methacrylate and mixtures thereof, and a second monomer selected from the group consisting of an acrylate, a (meth)acrylate or a mixture thereof having an acid cleavable ester substituent; and a photoacid generator. Also disclosed are processes for generating a photoresist image on a substrate with the photoresist composition.
    Type: Grant
    Filed: August 26, 2009
    Date of Patent: June 16, 2015
    Assignee: International Business Machines Corporation
    Inventors: Robert D. Allen, Phillip J. Brock, Richard A. DiPietro, Hoa D. Truong
  • Patent number: 8945808
    Abstract: Resist compositions that can be used in immersion lithography without the use of an additional topcoat are disclosed. The resist compositions comprise a photoresist polymer, at least one photoacid generator, a solvent; and a self-topcoating resist additive. A method of forming a patterned material layer on a substrate using the resist composition is also disclosed.
    Type: Grant
    Filed: April 28, 2006
    Date of Patent: February 3, 2015
    Assignee: International Business Machines Corporation
    Inventors: Robert Allen David, Phillip Joe Brock, Carl E Larson, Daniel Paul Sanders, Ratnam Sooriyakumaran, Linda Karin Sundberg, Hoa D Truong, Gregory Michael Wallraff
  • Patent number: 8900802
    Abstract: Provided is a method for developing positive-tone chemically amplified resists with an organic developer solvent having at least one polyhydric alcohol, such as ethylene glycol and/or glycerol, alone or in combination with an additional organic solvent, such as isopropyl alcohol, and/or water. The organic solvent developed positive tone resists described herein are useful for lithography pattern forming processes; for producing semiconductor devices, such as integrated circuits (IC); and for applications where basic solvents are not suitable, such as the fabrication of chips patterned with arrays of biomolecules or deprotection applications that do not require the presence of acid moieties.
    Type: Grant
    Filed: February 23, 2013
    Date of Patent: December 2, 2014
    Assignees: International Business Machines Corporation, JSR Corporation
    Inventors: Robert D. Allen, Ramakrishnan Ayothi, Luisa D. Bozano, William D. Hinsberg, Linda K. Sundberg, Sally A. Swanson, Hoa D. Truong, Gregory M. Wallraff
  • Patent number: 8821978
    Abstract: A method of forming a layered structure comprising a domain pattern of a self-assembled material utilizes a negative-tone patterned photoresist layer comprising non-crosslinked developed photoresist. The developed photoresist is not soluble in an organic casting solvent for a material capable of self-assembly. The developed photoresist is soluble in an aqueous alkaline developer and/or a second organic solvent. A solution comprising the material capable of self-assembly and the organic casting solvent is casted on the patterned photoresist layer. Upon removal of the organic casting solvent, the material self-assembles, thereby forming the layered structure.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: September 2, 2014
    Assignee: International Business Machines Corporation
    Inventors: Joy Cheng, William D. Hinsberg, Ho-Cheol Kim, Young-Hye Na, Daniel Paul Sanders, Linda Karin Sundberg, Hoa D. Truong, Gregory Michael Wallraff, Atsuko Ito