Patents by Inventor Holden H. Wu
Holden H. Wu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11796620Abstract: A method for acquiring magnetic resonance imaging data with respiratory motion compensation using one or more motion signals includes acquiring a plurality of gradient-delay-corrected radial readout views of a subject using a free-breathing multi-echo pulse sequence, and sampling a plurality of data points of the gradient-delay-corrected radial readout views to yield a self-gating signal. The self-gating signal is used to determine a plurality of respiratory motion states corresponding to the plurality of gradient-delay-corrected radial readout views. The respiratory motion states are used to correct respiratory motion bias in the gradient-delay-corrected radial readout views, thereby yielding gradient-delay-corrected and motion-compensated multi-echo data. One or more images are reconstructed using the gradient-delay-corrected and motion-compensated multi-echo data.Type: GrantFiled: October 1, 2021Date of Patent: October 24, 2023Assignees: Siemens Healthcare GmbH, The Regents of the University of CaliforniaInventors: Xiaodong Zhong, Holden H. Wu, Vibhas S. Deshpande, Tess Armstrong, Li Pan, Marcel Dominik Nickel, Stephan Kannengiesser
-
Patent number: 11432737Abstract: Systems and methods for predicting motion of a target using imaging are provided. In one aspect, a method includes receiving image data, acquired using an imaging system, corresponding to a region of interest (“ROI”) in a subject, and generating a set of reconstructed images from the image data. The method also includes processing the set of reconstructed images to obtain motion information associated with a target in the ROI, and applying the motion information in a motion prediction framework to estimate a predicted motion of the target. The method further includes generating a report based on the predicted motion estimated.Type: GrantFiled: March 17, 2018Date of Patent: September 6, 2022Assignee: The Regents of the University of CaliforniaInventors: Xinzhou Li, Holden H. Wu
-
Publication number: 20220179023Abstract: A method for proton resonance frequency shift (PRF) and T1-based temperature mapping using a magnetic resonance imaging (MRI) system includes acquiring, using the MRI system, a set of magnetic resonance (MR) data from a region of interest of a subject by performing a variable-flip-angle multi-echo gradient-echo 3D stack-of-radial pulse sequence. The pulse sequence is configured to acquire radial k-space data in a plurality of segments, each segment acquired with each of a plurality of flip angles. The method further includes generating at least one T1 map based on the set of MR data, generating at least one PRF temperature map based on the set of MR data, generating at least one T1-based temperature map based on the set of MR data and displaying the PRF temperature map and the T1-based temperature map. In another embodiment, the MR data may be used to generate a plurality of quantitative parameter maps for each of the plurality of MR parameters such as T1, proton-density fat fraction (PDFF), and R2*.Type: ApplicationFiled: April 15, 2020Publication date: June 9, 2022Inventors: Holden H. Wu, Le Zhang, Tess Armstrong
-
Publication number: 20220160901Abstract: The present disclosure provides stimuli-responsive particles, methods of preparing stimuli-responsive particles, and methods of using the stimuli-response particles. Unlike conventional platforms, (e.g., polymers, liposomes, dendrimers) the particles of the present disclosure have precise size control of the particle diameter, high uniformity, high stability, high active agent uptake capacity, minimal premature active agent leakage, biocompatibility, and biodegradability. Additionally, the present disclosure provides magnetic resonance imaging (MRI) systems and methods of using the MRI systems in combination with the stimuli-responsive particles described herein.Type: ApplicationFiled: March 16, 2020Publication date: May 26, 2022Inventors: Jeffrey I. Zink, Holden H. Wu, Chi-An Cheng, Wei Chen, Tian Deng, Navnita Kumar, Le Zhang
-
Publication number: 20220128641Abstract: A method for acquiring magnetic resonance imaging data with respiratory motion compensation using one or more motion signals includes acquiring a plurality of gradient-delay-corrected radial readout views of a subject using a free-breathing multi-echo pulse sequence, and sampling a plurality of data points of the gradient-delay-corrected radial readout views to yield a self-gating signal. The self-gating signal is used to determine a plurality of respiratory motion states corresponding to the plurality of gradient-delay-corrected radial readout views. The respiratory motion states are used to correct respiratory motion bias in the gradient-delay-corrected radial readout views, thereby yielding gradient-delay-corrected and motion-compensated multi-echo data. One or more images are reconstructed using the gradient-delay-corrected and motion-compensated multi-echo data.Type: ApplicationFiled: October 1, 2021Publication date: April 28, 2022Inventors: Xiaodong Zhong, Holden H. Wu, Vibhas S. Deshpande, Tess Armstrong, Li Pan, Marcel Dominik Nickel, Stephan Kannengiesser
-
Patent number: 11175366Abstract: A method for acquiring magnetic resonance imaging data with respiratory motion compensation using one or more motion signals includes acquiring a plurality of gradient-delay-corrected radial readout views of a subject using a free-breathing multi-echo pulse sequence, and sampling a plurality of data points of the gradient-delay-corrected radial readout views to yield a self-gating signal. The self-gating signal is used to determine a plurality of respiratory motion states corresponding to the plurality of gradient-delay-corrected radial readout views. The respiratory motion states are used to correct respiratory motion bias in the gradient-delay-corrected radial readout views, thereby yielding gradient-delay-corrected and motion-compensated multi-echo data. One or more images are reconstructed using the gradient-delay-corrected and motion-compensated multi-echo data.Type: GrantFiled: February 5, 2020Date of Patent: November 16, 2021Assignees: Siemens Healthcare GmbH, The Regents of the University of CaliforniaInventors: Xiaodong Zhong, Holden H. Wu, Vibhas S. Deshpande, Tess Armstrong, Li Pan, Marcel Dominik Nickel, Stephan Kannengiesser
-
Publication number: 20200249304Abstract: A method for acquiring magnetic resonance imaging data with respiratory motion compensation using one or more motion signals includes acquiring a plurality of gradient-delay-corrected radial readout views of a subject using a free-breathing multi-echo pulse sequence, and sampling a plurality of data points of the gradient-delay-corrected radial readout views to yield a self-gating signal. The self-gating signal is used to determine a plurality of respiratory motion states corresponding to the plurality of gradient-delay-corrected radial readout views. The respiratory motion states are used to correct respiratory motion bias in the gradient-delay-corrected radial readout views, thereby yielding gradient-delay-corrected and motion-compensated multi-echo data. One or more images are reconstructed using the gradient-delay-corrected and motion-compensated multi-echo data.Type: ApplicationFiled: February 5, 2020Publication date: August 6, 2020Inventors: Xiaodong Zhong, Holden H. Wu, Vibhas S. Deshpande, Tess Armstrong, Li Pan, Marcel Dominik Nickel, Stephan Kannengiesser
-
Patent number: 10677870Abstract: A system and method for optimized diffusion-weighted imaging is provided. In one aspect, the method includes providing a plurality of constraints for imaging a target at a selected diffusion weighting, and applying an optimization framework to generate an optimized diffusion encoding gradient waveform satisfying the plurality of constraints. The method also includes performing, using the MRI system, a pulse sequence comprising the optimized diffusion encoding gradient waveform to generate diffusion-weighted data, and generating at least one image of the target using the diffusion-weighted data.Type: GrantFiled: January 25, 2017Date of Patent: June 9, 2020Assignee: The Regents of the University of CaliforniaInventors: Daniel B. Ennis, Eric Aliotta, Holden H. Wu
-
Publication number: 20200046450Abstract: A system for imparting motion of an object includes: (1) at least one first hydrostatic actuator; (2) a hydraulic transmission conduit; and (3) at least one second hydrostatic actuator. The first hydrostatic actuator is connected to the second hydrostatic actuator via the hydraulic transmission conduit, such that an input displacement applied to the first hydrostatic actuator is transmitted via the hydraulic transmission conduit to the second hydrostatic actuator to impart motion of the object.Type: ApplicationFiled: February 20, 2018Publication date: February 13, 2020Inventors: Tsu-Chin TSAO, James M. SIMONELLI, Holden H. WU, Samantha MIKAIEL, Yu-Hsiu LEE, Cheng-Wei CHEN, Kyung Hyun SUNG, David S. LU
-
Publication number: 20200008707Abstract: Systems and methods for predicting motion of a target using imaging are provided. In one aspect, a method includes receiving image data, acquired using an imaging system, corresponding to a region of interest (“ROI”) in a subject, and generating a set of reconstructed images from the image data. The method also includes processing the set of reconstructed images to obtain motion information associated with a target in the ROI, and applying the motion information in a motion prediction framework to estimate a predicted motion of the target. The method further includes generating a report based on the predicted motion estimated.Type: ApplicationFiled: March 17, 2018Publication date: January 9, 2020Inventors: Xinzhou LI, Holden H. WU
-
Patent number: 10219787Abstract: A computer implemented method for providing cardiovascular images over a respiratory cycle through a computer system is provided. A plurality of cardiovascular images is obtained. A cardiac phase is measured for each cardiovascular image of the plurality of cardiovascular images to associate each cardiovascular image to a cardiac phase. A respiratory phase is measured for each cardiovascular image of the plurality of cardiovascular images to associate each cardiovascular image to a respiratory phase. A first group of cardiovascular images with an associated first cardiac phase of the plurality of cardiovascular images is sorted in order of respiratory phases. The first group of cardiovascular images with the associated first cardiac phase of the plurality of cardiovascular images is displayed in order of respiratory phases.Type: GrantFiled: September 21, 2011Date of Patent: March 5, 2019Assignee: The Board of Trustees of the Leland Stanford Junior UniversityInventors: Michael V. McConnell, Holden H. Wu
-
Publication number: 20190033410Abstract: A system and method for optimized diffusion-weighted imaging is provided. In one aspect, the method includes providing a plurality of constraints for imaging a target at a selected diffusion weighting, and applying an optimization framework to generate an optimized diffusion encoding gradient waveform satisfying the plurality of constraints. The method also includes performing, using the MRI system, a pulse sequence comprising the optimized diffusion encoding gradient waveform to generate diffusion-weighted data, and generating at least one image of the target using the diffusion-weighted data.Type: ApplicationFiled: January 25, 2017Publication date: January 31, 2019Inventors: Daniel B. Ennis, Eric Aliotta, Holden H. Wu
-
Publication number: 20160313427Abstract: A fast 3D T2-weighted imaging system and method is disclosed that uses balanced steady state free precession (bSSFP), variable flip angles, and an interleaved multi-shot spiral-out phase encode ordering strategy to acquire high resolution T2-weighted images quickly while maintaining spatial resolution.Type: ApplicationFiled: April 22, 2016Publication date: October 27, 2016Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIAInventors: Daniel B. Ennis, Subashini Srinivasan, Holden H. Wu
-
Patent number: 9121915Abstract: A 5-dimensional imaging method and system is provided to acquire and display the effect of dynamic physiologic changes (either spontaneous or induced) on cardiac function of a patient's heart to elucidate their effects on diastolic myocardial function. In a patient free-breathing magnetic resonance imaging study, 3-dimensional spatial information is encoded by a non-Cartesian 3-dimensional k-space readout trajectory and acquired concurrently with recordings of cardiac and respiratory cycles. The advantage of using non-Cartesian sampling in this invention compared to, for example, Cartesian sampling is higher scan acceleration, improved robustness to motion/flow effects (incoherent instead of coherent artifacts) and robustness to missing data points in k-space.Type: GrantFiled: December 8, 2011Date of Patent: September 1, 2015Assignees: The Board of Trustees of the Leland Stanford Junior University, Palo Alto Medical Foundation for Healthcare, Research and EducationInventors: Holden H Wu, Bob S Hu
-
Publication number: 20120146641Abstract: A 5-dimensional imaging method and system is provided to acquire and display the effect of dynamic physiologic changes (either spontaneous or induced) on cardiac function of a patient's heart to elucidate their effects on diastolic myocardial function. In a patient free-breathing magnetic resonance imaging study, 3-dimensional spatial information is encoded by a non-Cartesian 3-dimensional k-space readout trajectory and acquired concurrently with recordings of cardiac and respiratory cycles. The advantage of using non-Cartesian sampling in this invention compared to, for example, Cartesian sampling is higher scan acceleration, improved robustness to motion/flow effects (incoherent instead of coherent artifacts) and robustness to missing data points in k-space.Type: ApplicationFiled: December 8, 2011Publication date: June 14, 2012Inventors: Holden H. Wu, Bob S. Hu
-
Publication number: 20120078083Abstract: A computer implemented method for providing cardiovascular images over a respiratory cycle through a computer system is provided. A plurality of cardiovascular images is obtained. A cardiac phase is measured for each cardiovascular image of the plurality of cardiovascular images to associate each cardiovascular image to a cardiac phase. A respiratory phase is measured for each cardiovascular image of the plurality of cardiovascular images to associate each cardiovascular image to a respiratory phase. A first group of cardiovascular images with an associated first cardiac phase of the plurality of cardiovascular images is sorted in order of respiratory phases. The first group of cardiovascular images with the associated first cardiac phase of the plurality of cardiovascular images is displayed in order of respiratory phases.Type: ApplicationFiled: September 21, 2011Publication date: March 29, 2012Applicant: The Board of Trustees of the Leland Stanford Junior UniversityInventors: Michael V. McConnell, Holden H. Wu