Patents by Inventor Home-Been Cheng

Home-Been Cheng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9875927
    Abstract: A method for forming patterns for semiconductor device includes following steps. A substrate including a hard mask layer and a sacrificial layer is provided. A plurality of mandrel patterns are formed on the substrate. A spacer is respectively formed on sidewalls of the mandrel patterns. The mandrel patterns are removed to form a plurality of spacer patterns directly formed on the sacrificial layer. A plurality of first blocking layers are formed in the sacrificial layer after forming the spacer patterns. A plurality of second blocking layers exposing at least a portion of the sacrificial layer and at least a portion of the first blocking layers are formed on the substrate. The sacrificial layer and the hard mask layer are etched with the spacer patterns, the first blocking layers, and the second blocking layers serving as etching masks to form a patterned hard mask layer on the substrate.
    Type: Grant
    Filed: November 21, 2016
    Date of Patent: January 23, 2018
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Tzu-Hao Fu, Home-Been Cheng, Ci-Dong Chu, Tsung-Yin Hsieh
  • Publication number: 20170069529
    Abstract: A method for forming patterns for semiconductor device includes following steps. A substrate including a hard mask layer and a sacrificial layer is provided. A plurality of mandrel patterns are formed on the substrate. A spacer is respectively formed on sidewalls of the mandrel patterns. The mandrel patterns are removed to form a plurality of spacer patterns directly formed on the sacrificial layer. A plurality of first blocking layers are formed in the sacrificial layer after forming the spacer patterns. A plurality of second blocking layers exposing at least a portion of the sacrificial layer and at least a portion of the first blocking layers are formed on the substrate. The sacrificial layer and the hard mask layer are etched with the spacer patterns, the first blocking layers, and the second blocking layers serving as etching masks to form a patterned hard mask layer on the substrate.
    Type: Application
    Filed: November 21, 2016
    Publication date: March 9, 2017
    Inventors: Tzu-Hao Fu, Home-Been Cheng, Ci-Dong Chu, Tsung-Yin Hsieh
  • Patent number: 9536751
    Abstract: A method for forming patterns for semiconductor device includes following steps. A substrate is provided. The substrate includes a hard mask layer and a sacrificial layer formed thereon. A plurality of spacer patterns parallel with each other are formed on the substrate. A plurality of first blocking layers are formed in the sacrificial layer after forming the spacer patterns. A plurality of second blocking layers exposing at least a portion of the sacrificial layer and at least a portion the first blocking layer are formed on the substrate after forming the first blocking layer. Next, the sacrificial layer and the hard mask layer are etched with the spacer patterns, the first blocking layers and the second blocking layer being used as etching masks to form a patterned hard mask layer on the substrate.
    Type: Grant
    Filed: June 16, 2015
    Date of Patent: January 3, 2017
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Tzu-Hao Fu, Home-Been Cheng, Ci-Dong Chu, Tsung-Yin Hsieh
  • Publication number: 20160351410
    Abstract: A method for forming patterns for semiconductor device includes following steps. A substrate is provided. The substrate includes a hard mask layer and a sacrificial layer formed thereon. A plurality of spacer patterns parallel with each other are formed on the substrate. A plurality of first blocking layers are formed in the sacrificial layer after forming the spacer patterns. A plurality of second blocking layers exposing at least a portion of the sacrificial layer and at least a portion the first blocking layer are formed on the substrate after forming the first blocking layer. Next, the sacrificial layer and the hard mask layer are etched with the spacer patterns, the first blocking layers and the second blocking layer being used as etching masks to form a patterned hard mask layer on the substrate.
    Type: Application
    Filed: June 16, 2015
    Publication date: December 1, 2016
    Inventors: Tzu-Hao Fu, Home-Been Cheng, Ci-Dong Chu, Tsung-Yin Hsieh
  • Patent number: 9502530
    Abstract: A method of manufacturing a semiconductor device including the steps of providing a substrate having first type semiconductor regions and second type semiconductor regions, forming a conformal first epitaxy mask layer on the substrate, forming first type epitaxial layer in the substrate of the first type semiconductor regions, forming a conformal second epitaxy mask layer on the substrate, forming second type epitaxial layer in the substrate of the second type semiconductor regions, and removing the second epitaxy mask layer.
    Type: Grant
    Filed: November 8, 2015
    Date of Patent: November 22, 2016
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Yu-Hsiang Hung, Chung-Fu Chang, Chia-Jong Liu, Yen-Liang Wu, Pei-Yu Chou, Home-Been Cheng
  • Patent number: 9312208
    Abstract: A through silicon via structure is disclosed. The through silicon via includes: a substrate; a first dielectric layer disposed on the substrate and having a plurality of first openings, in which a bottom of the plurality of first openings is located lower than an original surface of the substrate; a via hole disposed through the first dielectric layer and the substrate, in which the via hole not overlapping for all of the plurality of first openings; a second dielectric layer disposed within the plurality of first openings and on a sidewall of the via hole while filling the plurality of first openings; and a conductive material layer disposed within the via hole having the second dielectric layer on the sidewall of the via hole, thereby forming a through silicon via.
    Type: Grant
    Filed: October 22, 2014
    Date of Patent: April 12, 2016
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Hsin-Yu Chen, Home-Been Cheng, Yu-Han Tsai, Ching-Li Yang
  • Publication number: 20160064521
    Abstract: A method of manufacturing a semiconductor device including the steps of providing a substrate having first type semiconductor regions and second type semiconductor regions, forming a conformal first epitaxy mask layer on the substrate, forming first type epitaxial layer in the substrate of the first type semiconductor regions, forming a conformal second epitaxy mask layer on the substrate, forming second type epitaxial layer in the substrate of the second type semiconductor regions, and removing the second epitaxy mask layer.
    Type: Application
    Filed: November 8, 2015
    Publication date: March 3, 2016
    Inventors: Yu-Hsiang Hung, Chung-Fu Chang, Chia-Jong Liu, Yen-Liang Wu, Pei-Yu Chou, Home-Been Cheng
  • Patent number: 9214395
    Abstract: A method of manufacturing a semiconductor device including the steps of providing a substrate having first type semiconductor regions and second type semiconductor regions, forming a conformal first epitaxy mask layer on the substrate, forming first type epitaxial layer in the substrate of the first type semiconductor regions, forming a conformal second epitaxy mask layer on the substrate, forming second type epitaxial layer in the substrate of the second type semiconductor regions, and removing the second epitaxy mask layer.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: December 15, 2015
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Yu-Hsiang Hung, Chung-Fu Chang, Chia-Jong Liu, Yen-Liang Wu, Pei-Yu Chou, Home-Been Cheng
  • Publication number: 20150041961
    Abstract: A through silicon via structure is disclosed. The through silicon via includes: a substrate; a first dielectric layer disposed on the substrate and having a plurality of first openings, in which a bottom of the plurality of first openings is located lower than an original surface of the substrate; a via hole disposed through the first dielectric layer and the substrate, in which the via hole not overlapping for all of the plurality of first openings; a second dielectric layer disposed within the plurality of first openings and on a sidewall of the via hole while filling the plurality of first openings; and a conductive material layer disposed within the via hole having the second dielectric layer on the sidewall of the via hole, thereby forming a through silicon via.
    Type: Application
    Filed: October 22, 2014
    Publication date: February 12, 2015
    Inventors: Hsin-Yu Chen, Home-Been Cheng, Yu-Han Tsai, Ching-Li Yang
  • Patent number: 8900996
    Abstract: A method of fabricating a through silicon via (TSV) structure is provided, in which, a first dielectric layer is formed on the substrate, the first dielectric layer is patterned to have at least one first opening, a via hole is formed in the first dielectric layer and the substrate, a second dielectric layer is conformally formed on the first dielectric layer, the second dielectric layer has at least one second opening corresponding to the at least one first opening, and the second dielectric layer covers a sidewall of the via hole. A conductive material layer is formed to fill the via hole and the second opening. The conductive material layer is planarized to form a TSV within the via hole. A TSV structure is also provided, in which, the second dielectric layer is disposed within the first opening and on the sidewall of the via hole.
    Type: Grant
    Filed: June 21, 2012
    Date of Patent: December 2, 2014
    Assignee: United Microelectronics Corp.
    Inventors: Hsin-Yu Chen, Home-Been Cheng, Yu-Han Tsai, Ching-Li Yang
  • Patent number: 8841755
    Abstract: The present invention relates to a through silicon via (TSV). The TSV is disposed in a substrate including a via opening penetrating through a first surface and a second surface of the substrate. The TSV includes an insulation layer, a barrier layer, a buffer layer and a conductive electrode. The insulation layer is disposed on a surface of the via opening. The barrier layer is disposed on a surface of the insulation layer. The buffer layer is disposed on a surface of the barrier layer. The conductive electrode is disposed on a surface of the buffer layer and a remainder of the via opening is completely filled with the conductive electrode. A portion of the buffer layer further covers a surface of the conductive electrode at a side of the second surface and said portion is level with the second surface.
    Type: Grant
    Filed: July 22, 2013
    Date of Patent: September 23, 2014
    Assignee: United Microelectronics Corp.
    Inventors: Kuo-Hsiung Huang, Chun-Mao Chiou, Hsin-Yu Chen, Yu-Han Tsai, Ching-Li Yang, Home-Been Cheng
  • Publication number: 20140273368
    Abstract: A method of manufacturing a semiconductor device including the steps of providing a substrate having first type semiconductor regions and second type semiconductor regions, forming a conformal first epitaxy mask layer on the substrate, forming first type epitaxial layer in the substrate of the first type semiconductor regions, forming a conformal second epitaxy mask layer on the substrate, forming second type epitaxial layer in the substrate of the second type semiconductor regions, and removing the second epitaxy mask layer.
    Type: Application
    Filed: March 13, 2013
    Publication date: September 18, 2014
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Yu-Hsiang Hung, Chung-Fu Chang, Chia-Jong Liu, Yen-Liang Wu, Pei-Yu Chou, Home-Been Cheng
  • Patent number: 8829575
    Abstract: A semiconductor structure includes a gate, a dual spacer and two recesses. The gate is located on a substrate. The dual spacer is located on the substrate beside the gate. The recesses are located in the substrate and the dual spacers, wherein the sidewall of each of the recesses next to the gate has a lower tip and an upper tip, and the lower tip is located in the substrate while the upper tip is an acute angle located in the dual spacer and close to the substrate. The present invention also provides a semiconductor process formed said semiconductor structure.
    Type: Grant
    Filed: December 26, 2012
    Date of Patent: September 9, 2014
    Assignee: United Microelectronics Corp.
    Inventors: Chung-Fu Chang, Yu-Hsiang Hung, Chia-Jong Liu, Yen-Liang Wu, Pei-Yu Chou, Home-Been Cheng
  • Publication number: 20140175527
    Abstract: A semiconductor structure includes a gate, a dual spacer and two recesses. The gate is located on a substrate. The dual spacer is located on the substrate beside the gate. The recesses are located in the substrate and the dual spacers, wherein the sidewall of each of the recesses next to the gate has a lower tip and an upper tip, and the lower tip is located in the substrate while the upper tip is an acute angle located in the dual spacer and close to the substrate. The present invention also provides a semiconductor process formed said semiconductor structure.
    Type: Application
    Filed: December 26, 2012
    Publication date: June 26, 2014
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Chung-Fu Chang, Yu-Hsiang Hung, Chia-Jong Liu, Yen-Liang Wu, Pei-Yu Chou, Home-Been Cheng
  • Patent number: 8753902
    Abstract: A method of controlling an etching process for forming an epitaxial structure includes the following steps. A substrate having a gate thereon is provided. A spacer is formed on the substrate beside the gate to define the position of the epitaxial structure. A thickness of the spacer is measured. The etching time of a first etching process is set according to the thickness. The first etching process is performed to form a recess in the substrate beside the spacer. The epitaxial structure is formed in the recess.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: June 17, 2014
    Assignee: United Microelectronics Corp.
    Inventors: Chia-Jong Liu, Yen-Liang Wu, Chung-Fu Chang, Yu-Hsiang Hung, Pei-Yu Chou, Home-Been Cheng
  • Patent number: 8691688
    Abstract: A method of processing a substrate is provided. The method includes: providing a substrate, wherein the substrate includes a silicon layer; etching the substrate to form a cavity; filling a first conductor in part of the cavity; performing a first thermal treatment on the first conductor; filling a second conductor in the cavity to fill-up the cavity; and performing a second thermal treatment on the first conductor and the second conductor.
    Type: Grant
    Filed: June 18, 2012
    Date of Patent: April 8, 2014
    Assignee: United Microelectronics Corp.
    Inventors: Hsin-Yu Chen, Yu-Han Tsai, Chun-Ling Lin, Ching-Li Yang, Home-Been Cheng
  • Publication number: 20130341799
    Abstract: A method of fabricating a through silicon via (TSV) structure is provided, in which, a first dielectric layer is formed on the substrate, the first dielectric layer is patterned to have at least one first opening, a via hole is formed in the first dielectric layer and the substrate, a second dielectric layer is conformally formed on the first dielectric layer, the second dielectric layer has at least one second opening corresponding to the at least one first opening, and the second dielectric layer covers a sidewall of the via hole. A conductive material layer is formed to fill the via hole and the second opening. The conductive material layer is planarized to form a TSV within the via hole. A TSV structure is also provided, in which, the second dielectric layer is disposed within the first opening and on the sidewall of the via hole.
    Type: Application
    Filed: June 21, 2012
    Publication date: December 26, 2013
    Inventors: Hsin-Yu Chen, Home-Been Cheng, Yu-Han Tsai, Ching-Li Yang
  • Publication number: 20130337645
    Abstract: A method of processing a substrate is provided. The method includes: providing a substrate, wherein the substrate includes a silicon layer; etching the substrate to form a cavity; filling a first conductor in part of the cavity; performing a first thermal treatment on the first conductor; filling a second conductor in the cavity to fill-up the cavity; and performing a second thermal treatment on the first conductor and the second conductor.
    Type: Application
    Filed: June 18, 2012
    Publication date: December 19, 2013
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Hsin-Yu Chen, Yu-Han Tsai, Chun-Ling Lin, Ching-Li Yang, Home-Been Cheng
  • Publication number: 20130299949
    Abstract: The present invention relates to a through silicon via (TSV). The TSV is disposed in a substrate including a via opening penetrating through a first surface and a second surface of the substrate. The TSV includes an insulation layer, a barrier layer, a buffer layer and a conductive electrode. The insulation layer is disposed on a surface of the via opening. The barrier layer is disposed on a surface of the insulation layer. The buffer layer is disposed on a surface of the barrier layer. The conductive electrode is disposed on a surface of the buffer layer and a remainder of the via opening is completely filled with the conductive electrode. A portion of the buffer layer further covers a surface of the conductive electrode at a side of the second surface and said portion is level with the second surface.
    Type: Application
    Filed: July 22, 2013
    Publication date: November 14, 2013
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Kuo-Hsiung Huang, Chun-Mao Chiou, Hsin-Yu Chen, Yu-Han Tsai, Ching-Li Yang, Home-Been Cheng
  • Publication number: 20130270712
    Abstract: A through silicon via structure and a method of fabricating the through silicon via structure are disclosed. After an interlayer dielectric is formed, a via hole is then formed to pass through the interlayer dielectric; thereafter, a dielectric liner is formed within the via hole and extends onto the interlayer dielectric; thereafter, the via hole is filled with a conductive material; and a chemical-mechanical polishing process is performed to planarize the conductive material, using the dielectric liner on the interlayer dielectric as a stop layer of the chemical-mechanical polishing process.
    Type: Application
    Filed: April 16, 2012
    Publication date: October 17, 2013
    Inventors: Hsin-Yu Chen, Yu-Han Tsai, Ching-Li Yang, Home-Been Cheng