Patents by Inventor Hongbin Guo

Hongbin Guo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11954409
    Abstract: The present disclosure provides a method for planning a distribution network with reliability constraints based on a feeder corridor, including determining installation states of respective elements in the distribution network; determining an objective function, the objective function being an objective function of minimizing a total investment cost of the distribution network; obtaining fault-isolation-and-load-transfer time and fault recovery time in a case where the feeder segment of each feeder line that is contained in each feeder corridor fails; determining constraint conditions including reliability constraints; building a distribution network planning model according to the objective function and the constraints; and solving the distribution network planning model built to obtain optimal solutions as planning states and reliability indexes to plan the distribution network.
    Type: Grant
    Filed: July 2, 2021
    Date of Patent: April 9, 2024
    Assignee: TSINGHUA UNIVERSITY
    Inventors: Wenchuan Wu, Boming Zhang, Zihao Li, Hongbin Sun, Bin Wang, Qinglai Guo
  • Patent number: 11926794
    Abstract: A continuous operation method is employed for the microwave high-temperature pyrolysis of a solid material containing an organic matter. The method includes the steps of mixing a solid material containing an organic matter with a liquid organic medium; transferring the obtained mixture to a microwave field; and in the microwave field, continuously contacting the mixture with a strong wave absorption material in an inert atmosphere or in vacuum. The strong wave absorption material continuously generates a high temperature under a microwave such that the solid material containing an organic matter and the liquid organic medium are continuously pyrolyzed to implement a continuous operation.
    Type: Grant
    Filed: September 27, 2019
    Date of Patent: March 12, 2024
    Assignees: CHINA PETROLEUM & CHEMICAL CORPORATION, BEIJING RESEARCH INSTITUTE OF CHEMICAL INDUSTRY, CHINA PETROLEUM & CHEMICAL CORPORATION
    Inventors: Haibin Jiang, Jinliang Qiao, Xiaohong Zhang, Wenlu Liu, Jianming Gao, Guicun Qi, Zhihai Song, Jinmei Lai, Chuanlun Cai, Binghai Li, Xiang Wang, Yue Ru, Hongbin Zhang, Peng Han, Jiangru Zhang, Chao Jiang, Zhaoyan Guo
  • Patent number: 11925819
    Abstract: The treatment couch includes a couch panel, a main supporting structure, an auxiliary supporting structure and a supporting beam. Both ends of the supporting beam are respectively connected to the main supporting structure and the auxiliary supporting structure.
    Type: Grant
    Filed: April 23, 2021
    Date of Patent: March 12, 2024
    Assignees: SHENZHEN OUR NEW MEDICAL TECHNOLOGIES DEVELOPMENT CO., LTD., OUR UNITED CORPORATION
    Inventors: Zhao Guo, Hongbin Zhao, Yueming Yang
  • Patent number: 11923685
    Abstract: A reactive power-voltage control method for integrated transmission and distribution networks is provided. The reactive power-voltage control method includes: establishing a reactive power-voltage control model for a power system consisting of a transmission network and a plurality of distribution networks; performing a second order cone relaxation on a non-convex constraint of the plurality of distribution network constraints to obtain the convex-relaxed reactive power-voltage control model; solving the convex-relaxed reactive power-voltage control model to acquire control variables of the transmission network and control variables of each distribution network; and controlling the transmission network based on the control variables of the transmission network and controlling each distribution network based on the control variables of the distribution network, so as to realize coordinated control of the power system.
    Type: Grant
    Filed: June 14, 2021
    Date of Patent: March 5, 2024
    Assignees: TSINGHUA UNIVERSITY, STATE GRID JIBEI ELECTRIC POWER COMPANY
    Inventors: Bin Wang, Yanling Du, Wenchuan Wu, Haitao Liu, Hongbin Sun, Guannan Wang, Qinglai Guo, Qi Wang, Chenhui Lin
  • Patent number: 10786212
    Abstract: A computed tomography (CT) system includes a rotatable gantry having an opening to receive an object to be scanned, an x-ray tube, a pixelated detector positioned on the rotatable gantry to receive the x-rays from the x-ray tube, and a computer programmed to acquire helical CT data, determine a sunrise (SR) view position for each pixel within a SR index image, and determine a sunset (SS) view position for each pixel within a SS index image, for a given reference image slice, wherein the SR view position is a first angle of an illumination range for a voxel and the SS view position is a last angle of the illumination range for the voxel, for all slices, rotate the SR index image and the SS index image through a projection index, and reconstruct an image based on the rotated SR index image and the SS index image.
    Type: Grant
    Filed: May 31, 2019
    Date of Patent: September 29, 2020
    Assignee: Minfound Medical Systems Co., Ltd.
    Inventors: Hongbin Guo, Qing Ye
  • Patent number: 10667781
    Abstract: A CT system includes a rotatable gantry having an opening to receive an object to be scanned, a high-voltage generator, an x-ray tube positioned on the gantry to generate x-rays through the opening, and a pixelated detector positioned on the gantry to receive the x-rays. The system includes a computer programmed to cause the x-ray tube to generate x-rays, at a given high-voltage generator voltage (kV), toward a sub-set of detector pixels when no object is present within the opening, measure an output of the sub-set of detector pixels for a given number of views during the x-ray generation and for a total integration time, and determine a calibration factor based on the measured output and based on a generator feedback current measured during the total integration time.
    Type: Grant
    Filed: February 9, 2018
    Date of Patent: June 2, 2020
    Assignee: FMI Medical Systems Co., Ltd.
    Inventors: Abdelaziz Ikhlef, Hongbin Guo
  • Patent number: 10602993
    Abstract: A computed tomography (CT) system includes a rotatable gantry having an opening to receive an object to be scanned, an x-ray tube having an anode, the x-ray tube positioned on the rotatable gantry to generate x-rays from a first focal spot at a first z-location, and from a second focal spot at a second z-location, a pixelated detector positioned on the rotatable gantry to receive the x-rays from the first z-location and from the second z-location, and a computer. The computer is programmed to acquire a first dataset in a fan geometry at a first z-location, acquire a second dataset in the fan geometry at a second z-location, and reconstruct an image based on the first dataset and the second dataset, wherein the reconstruction is performed without combining the first dataset and the second dataset into one dataset with a single geometry from which the image reconstruction is performed.
    Type: Grant
    Filed: May 18, 2018
    Date of Patent: March 31, 2020
    Assignee: FMI Medical Systems Co., Ltd.
    Inventor: Hongbin Guo
  • Patent number: 10497153
    Abstract: A CT system includes a rotatable gantry having an opening to receive an object to be scanned, an x-ray tube having an anode, the x-ray tube positioned on the gantry to generate x-rays from a focal spot of the anode and through the opening, and a pixelated detector positioned on the gantry to receive the x-rays. The system includes a computer programmed to acquire CT data based on x-rays passing through the opening and to the pixelated detector, generate projection data from the acquired CT data, the projection data is corrected to account for heel effect by a correction factor that is determined based in part on an interaction depth of the x-rays within the anode, and based on an angular direction from the interaction depth to particular pixels within the pixelated detector, and reconstruct an image based on the generated projection data.
    Type: Grant
    Filed: February 8, 2018
    Date of Patent: December 3, 2019
    Assignee: FMI Medical Systems Co., Ltd.
    Inventors: Abdelaziz Ikhlef, Hongbin Guo
  • Publication number: 20190350539
    Abstract: A computed tomography (CT) system includes a rotatable gantry having an opening to receive an object to be scanned, an x-ray tube having an anode, the x-ray tube positioned on the rotatable gantry to generate x-rays from a first focal spot at a first z-location, and from a second focal spot at a second z-location, a pixelated detector positioned on the rotatable gantry to receive the x-rays from the first z-location and from the second z-location, and a computer. The computer is programmed to acquire a first dataset in a fan geometry at a first z-location, acquire a second dataset in the fan geometry at a second z-location, and reconstruct an image based on the first dataset and the second dataset, wherein the reconstruction is performed without combining the first dataset and the second dataset into one dataset with a single geometry from which the image reconstruction is performed.
    Type: Application
    Filed: May 18, 2018
    Publication date: November 21, 2019
    Inventor: Hongbin Guo
  • Publication number: 20190274653
    Abstract: A computed tomography (CT) system includes a rotatable gantry having an opening to receive an object to be scanned, an x-ray tube having an anode, the x-ray tube positioned on the gantry to generate x-rays from a focal spot of the anode and through the opening, a pixelated detector positioned on the gantry to receive the x-rays from which CT projection data is generated, and a computer. The computer programmed to acquire step-and-shoot (SAS) full scan CT projection data for a first scan and for a first rotation, and for a second scan and for a second rotation, wherein the first scan is axially offset from the second scan, interpolate across the first and second scans to generate interpolated projection data, and reconstruct an image based on the interpolated projection data.
    Type: Application
    Filed: March 6, 2018
    Publication date: September 12, 2019
    Inventors: Hongbin Guo, Chuang Miao, Abdelaziz Ikhlef, Xuelin Cui
  • Publication number: 20190247005
    Abstract: A CT system includes a rotatable gantry having an opening to receive an object to be scanned, a high-voltage generator, an x-ray tube positioned on the gantry to generate x-rays through the opening, and a pixelated detector positioned on the gantry to receive the x-rays. The system includes a computer programmed to cause the x-ray tube to generate x-rays, at a given high-voltage generator voltage (kV), toward a sub-set of detector pixels when no object is present within the opening, measure an output of the sub-set of detector pixels for a given number of views during the x-ray generation and for a total integration time, and determine a calibration factor based on the measured output and based on a generator feedback current measured during the total integration time.
    Type: Application
    Filed: February 9, 2018
    Publication date: August 15, 2019
    Inventors: Abdelaziz Ikhlef, Hongbin Guo
  • Publication number: 20190244397
    Abstract: A CT system includes a rotatable gantry having an opening to receive an object to be scanned, an x-ray tube having an anode, the x-ray tube positioned on the gantry to generate x-rays from a focal spot of the anode and through the opening, and a pixelated detector positioned on the gantry to receive the x-rays. The system includes a computer programmed to acquire CT data based on x-rays passing through the opening and to the pixelated detector, generate projection data from the acquired CT data, the projection data is corrected to account for heel effect by a correction factor that is determined based in part on an interaction depth of the x-rays within the anode, and based on an angular direction from the interaction depth to particular pixels within the pixelated detector, and reconstruct an image based on the generated projection data.
    Type: Application
    Filed: February 8, 2018
    Publication date: August 8, 2019
    Inventors: Abdelaziz Ikhlef, Hongbin Guo