Patents by Inventor Hongmin Chen

Hongmin Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210288469
    Abstract: This application provides a two-segment DBR laser and a monolithically integrated array light source chip, and relates to the field of optical communications. The two-segment DBR laser includes a grating region, a gain region, and a broadband reflector. The grating region and the broadband reflector are respectively disposed at two ends of the gain region. The grating region includes a first bottom liner, a first support structure, a first ridge waveguide structure, and a first heater. The first ridge waveguide structure is fastened by the first support structure and suspended in midair above the first bottom liner, and the first bottom liner, the first support structure, and the first ridge waveguide structure jointly form a cavity. The first heater is located on a surface that is of the first ridge waveguide structure and that faces away from the cavity.
    Type: Application
    Filed: May 28, 2021
    Publication date: September 16, 2021
    Inventors: Hongmin Chen, Can Zhang
  • Patent number: 10931085
    Abstract: A super structure grating spatially performs amplitude and phase modulation on a uniform grating using a modulation function to generate a comb reflection spectrum. (N+1) modulation function discrete values are obtained after discretization processing is performed on the modulation function using N thresholds. Each of the (N+1) modulation function discrete values corresponds to one section of optical waveguide whose refractive index is uniform or corresponds to one section of the uniform grating. A reflectivity and a full width half maximum (FWHM) of a reflection peak of the super structure grating is adjusted based on a relationship of a ratio of a length of an optical waveguide corresponding to at least one of the (N+1) modulation function discrete values to a total grating length of the super structure grating, and based on the total grating length of the super structure grating.
    Type: Grant
    Filed: October 17, 2019
    Date of Patent: February 23, 2021
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Lin Wu, Hongmin Chen
  • Patent number: 10923877
    Abstract: Embodiments of the present disclosure relate to a surface-mount laser apparatus. One example apparatus includes an on-chip laser, a passive waveguide, and a waveguide detector. The waveguide detector includes a first ridge waveguide. The on-chip laser includes a second ridge waveguide. The on-chip laser is coupled with the passive waveguide by the second ridge waveguide, and the waveguide detector is coupled with the passive waveguide by the first ridge waveguide.
    Type: Grant
    Filed: December 27, 2017
    Date of Patent: February 16, 2021
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Kaisheng Chen, Hongmin Chen
  • Publication number: 20210004811
    Abstract: Implementations of the present specification provide facial recognition payment methods and apparatuses. The method includes the following: receiving as input a payment amount; collecting face image information of a payer when receiving a facial recognition payment request; and sending a payment request to a payment server, where the payment request includes the payment amount, a device identifier of a facial recognition payment device, and the face image information, so that the payment server determines an account bound to payee based on the device identifier, and transfers the payment amount to the payee account from a payer account corresponding to the face image information.
    Type: Application
    Filed: February 28, 2020
    Publication date: January 7, 2021
    Applicant: Advanced New Technologies Co., Ltd.
    Inventors: Liang Zhou, Shumin Lin, Xuan Jiang, Hongmin Chen, Lei Guo, Jun Ma
  • Patent number: 10666014
    Abstract: A wavelength tunable laser includes: a heating layer, a dielectric layer, reflectors, a transport layer, a support layer, and a substrate layer. The heating layer is located above the transport layer; the transport layer is located above the support layer, and the transport layer includes an upper cladding layer, a waveguide layer, and a lower cladding layer from top to bottom; the reflector is located in the transport layer; the support layer has a protection structure, where the protection structure forms a hollow structure together with the transport layer and the substrate layer, and the hollow structure has a support structure; and the substrate layer is located below the support layer. The heating layer, the reflector, and a part of the transport layer form a suspended structure to prevent heat dissipation. Thus thermal tuning efficiency can be improved, and power consumption can be lowered.
    Type: Grant
    Filed: September 21, 2018
    Date of Patent: May 26, 2020
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Jifang He, Hongmin Chen, Hongbing Lei, Xiao Andy Shen
  • Patent number: 10646570
    Abstract: Photodynamic therapy systems comprising a nanoparticle that emits electromagnetic radiation having a first wavelength when irradiated with electromagnetic radiation, a photosensitizer which absorbs electromagnetic radiation of said first wavelength and a biocompatible mesoporous material are disclosed herein. In some examples, the photodynamic therapy system comprises a core comprising the nanoparticle, a first shell comprising the biocompatible mesoporous material, and a photosensitizer embedded in the first shell. Upon irradiation by, for example, X-rays, the nanoparticle can function as a transducer, converting X-ray photons to visible photons, and in turn, activating the photosensitizers. Methods of using the photodynamic therapy system are also disclosed.
    Type: Grant
    Filed: June 18, 2015
    Date of Patent: May 12, 2020
    Assignee: UNIVERSITY OF GEORGIA RESEARCH FOUNDATION, INC.
    Inventors: Jin Xie, Hongmin Chen, Geoffrey D. Wang
  • Publication number: 20200076155
    Abstract: A reflector structure for a tunable laser and a tunable laser. A super structure grating is used as a reflector structure, and a suspended structure is formed around a region in which the super structure grating is located, to implement, using the suspended structure, thermal isolation around the region in which the super structure grating is located, and increase thermal resistance, such that less heat is lost, and heat is concentrated in the region in which the super structure grating is located, thereby improving thermal tuning efficiency of the reflector structure. Moreover, lateral support structures are disposed on two sides of the suspended structure, to provide a mechanical support for the suspended structure. In addition, regions in the super structure grating that correspond to any two lateral support structures on a same side of the suspended structure fall at different locations in a spatial period of the super structure grating.
    Type: Application
    Filed: November 5, 2019
    Publication date: March 5, 2020
    Applicant: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Lin Wu, Hongmin Chen
  • Patent number: 10581222
    Abstract: A tunable laser is provided, including a first reflector, a second reflector, a phase adjustment area, a gain area, a first detector, a second detector, and a controller. The phase adjustment area is located between the first reflector and the gain area, the gain area is located between the phase adjustment area and the second reflector, a reflectivity of the first reflector is adjustable, and a reflectivity of the second reflector is adjustable. The first detector is configured to convert an optical signal of the first reflector into a first electrical signal. The second detector is configured to convert an optical signal of the second reflector into a second electrical signal. The controller is configured to adjust at least one of the reflectivity of the first reflector or the reflectivity of the second reflector based on the first electrical signal and the second electrical signal.
    Type: Grant
    Filed: July 13, 2018
    Date of Patent: March 3, 2020
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Jifang He, Hongmin Chen, Hongbing Lei, Xiao Andy Shen
  • Publication number: 20200052467
    Abstract: A super structure grating spatially performs amplitude and phase modulation on a uniform grating using a modulation function to generate a comb reflection spectrum. (N+1) modulation function discrete values are obtained after discretization processing is performed on the modulation function using N thresholds. Each of the (N+1) modulation function discrete values corresponds to one section of optical waveguide whose refractive index is uniform or corresponds to one section of the uniform grating. A reflectivity and a full width half maximum (FWHM) of a reflection peak of the super structure grating is adjusted based on a relationship of a ratio of a length of an optical waveguide corresponding to at least one of the (N+1) modulation function discrete values to a total grating length of the super structure grating, and based on the total grating length of the super structure grating.
    Type: Application
    Filed: October 17, 2019
    Publication date: February 13, 2020
    Inventors: Lin Wu, Hongmin Chen
  • Patent number: 10548993
    Abstract: Nanoparticles described as metal-encapsulated carbonaceous dots or M@C-dots are disclosed. Also disclosed are specific M@C-dots with gadolinium, so called Gd@C-dots. These nanoparticles are biologically inert and preclude the release of metal in biological environments. In addition, despite a dimension exceeding the commonly recognized threshold for renal clearance, the disclosed nanoparticles can be efficiently cleared via urine after systematic injection. Methods of making and using such nanoparticles are also disclosed.
    Type: Grant
    Filed: July 30, 2015
    Date of Patent: February 4, 2020
    Assignee: UNIVERSITY OF GEORGIA RESEARCH FOUNDATION, INC.
    Inventors: Jin Xie, Hongmin Chen, Geoffrey D. Wang
  • Patent number: 10197733
    Abstract: An edge coupling device including a substrate, a buried oxide disposed over the substrate, a cladding material disposed over the buried oxide, where the cladding material includes a trench, an inversely tapered silicon waveguide disposed within the cladding material beneath the trench, and a ridge waveguide disposed within the trench, where the ridge waveguide and the inversely tapered silicon waveguide are vertically-aligned with each other.
    Type: Grant
    Filed: April 19, 2017
    Date of Patent: February 5, 2019
    Assignee: Futurewei Technologies, Inc.
    Inventors: Huapu Pan, Zongrong Liu, Hongzhen Wei, Hongmin Chen
  • Publication number: 20190027896
    Abstract: A wavelength tunable laser includes: a heating layer, a dielectric layer, reflectors, a transport layer, a support layer, and a substrate layer. The heating layer is located above the transport layer; the transport layer is located above the support layer, and the transport layer includes an upper cladding layer, a waveguide layer, and a lower cladding layer from top to bottom; the reflector is located in the transport layer; the support layer has a protection structure, where the protection structure forms a hollow structure together with the transport layer and the substrate layer, and the hollow structure has a support structure; and the substrate layer is located below the support layer. The heating layer, the reflector, and a part of the transport layer form a suspended structure to prevent heat dissipation. Thus thermal tuning efficiency can be improved, and power consumption can be lowered.
    Type: Application
    Filed: September 21, 2018
    Publication date: January 24, 2019
    Inventors: Jifang He, Hongmin Chen, Hongbing Lei, Xiao Andy Shen
  • Patent number: 10133098
    Abstract: A metal-oxide semiconductor (MOS) optical modulator including a doped semiconductor layer having a waveguide structure, a dielectric layer disposed over the waveguide structure of the doped semiconductor layer, a gate region disposed over the dielectric layer, wherein the gate region comprises a transparent electrically conductive material having a refractive index lower than that of silicon, and a metal contact disposed over the gate region. The metal contact, the gate region, and the waveguide structure of the doped semiconductor layer may be vertically aligned with each other.
    Type: Grant
    Filed: April 17, 2015
    Date of Patent: November 20, 2018
    Assignee: Futurewei Technologies, Inc.
    Inventors: Hongmin Chen, Qianfan Xu, Li Yang, Xiao Shen, Dawei Zheng, Yusheng Bai, Hongbing Lei, Eric Dudley
  • Publication number: 20180323578
    Abstract: A tunable laser is provided, including a first reflector, a second reflector, a phase adjustment area, a gain area, a first detector, a second detector, and a controller. The phase adjustment area is located between the first reflector and the gain area, the gain area is located between the phase adjustment area and the second reflector, a reflectivity of the first reflector is adjustable, and a reflectivity of the second reflector is adjustable. The first detector is configured to convert an optical signal of the first reflector into a first electrical signal. The second detector is configured to convert an optical signal of the second reflector into a second electrical signal. The controller is configured to adjust at least one of the reflectivity of the first reflector or the reflectivity of the second reflector based on the first electrical signal and the second electrical signal.
    Type: Application
    Filed: July 13, 2018
    Publication date: November 8, 2018
    Inventors: Jifang HE, Hongmin CHEN, Hongbing LEI, Xiao Andy SHEN
  • Patent number: 10110402
    Abstract: A PAM4 signal generation apparatus is provided. The PAM4 signal generation apparatus includes a DFB, two EA modulators, an SOA, a PSR, a direct-current power source, two electrical-signal generators, and two amplitude-limiting amplifiers. The two electrical-signal generators and the two amplitude-limiting amplifiers are used to generate two NRZ electrical signals respectively, the DFB outputs two optical signals, the SOA amplifies an optical power of one of the optical signals, the two EA modulators use the NRZ electrical signals and the optical signals including “a large signal and a small signal” respectively to generate two NRZ optical signals respectively, and the two NRZ optical signals are multiplexed by the PSR to generate a PAM4 electrical signal. According to this apparatus, a linearity requirement is greatly lowered. PAM4 modulation is performed in an optical domain, and this prevents a PAM4 signal from being generated on an electrical signal.
    Type: Grant
    Filed: December 28, 2017
    Date of Patent: October 23, 2018
    Assignee: Hisilicon Optoelectronics Co., Limited
    Inventors: Hongmin Chen, Zhenwei Cui, Xi Huang
  • Patent number: 10097277
    Abstract: An apparatus comprises: a first input tap; a first optical modulator coupled to the first input tap; a first output tap coupled to the first optical modulator so that the first optical modulator is positioned between the first input tap and the first output tap; and a controller indirectly coupled to the first input tap and the first output tap.
    Type: Grant
    Filed: January 24, 2017
    Date of Patent: October 9, 2018
    Assignee: Futurewei Technologies, Inc.
    Inventors: Xueyan Zheng, Jianying Zhou, Xiao Shen, Chunlei Liao, Hongbing Lei, Hongmin Chen, Yu Sheng Bai
  • Publication number: 20180191536
    Abstract: A PAM4 signal generation apparatus is provided. The PAM4 signal generation apparatus includes a DFB, two EA modulators, an SOA, a PSR, a direct-current power source, two electrical-signal generators, and two amplitude-limiting amplifiers. The two electrical-signal generators and the two amplitude-limiting amplifiers are used to generate two NRZ electrical signals respectively, the DFB outputs two optical signals, the SOA amplifies an optical power of one of the optical signals, the two EA modulators use the NRZ electrical signals and the optical signals including “a large signal and a small signal” respectively to generate two NRZ optical signals respectively, and the two NRZ optical signals are multiplexed by the PSR to generate a PAM4 electrical signal. According to this apparatus, a linearity requirement is greatly lowered. PAM4 modulation is performed in an optical domain, and this prevents a PAM4 signal from being generated on an electrical signal.
    Type: Application
    Filed: December 28, 2017
    Publication date: July 5, 2018
    Inventors: Hongmin CHEN, Zhenwei CUI, Xi HUANG
  • Publication number: 20180191128
    Abstract: Embodiments of the present disclosure relate to a surface-mount laser apparatus. One example apparatus includes an on-chip laser, a passive waveguide, and a waveguide detector. The waveguide detector includes a first ridge waveguide. The on-chip laser includes a second ridge waveguide. The on-chip laser is coupled with the passive waveguide by the second ridge waveguide, and the waveguide detector is coupled with the passive waveguide by the first ridge waveguide.
    Type: Application
    Filed: December 27, 2017
    Publication date: July 5, 2018
    Inventors: Kaisheng CHEN, Hongmin CHEN
  • Patent number: 9933570
    Abstract: A method for fabricating a photonic integrated circuit (PIC) comprises providing a wafer comprising an insulator layer positioned between a top semiconductor layer and a base semiconductor layer, patterning the top semiconductor layer to simultaneously define a waveguide and a first etch mask window for forming a fiber-guiding v-groove that substantially aligns to an axis of optical signal propagation of the waveguide, removing a first portion of the top semiconductor layer to form the waveguide according to the patterning, removing a second portion of the top semiconductor layer to form the first etch mask window according to the patterning, and forming the fiber-guiding v-groove according to the first etch mask window.
    Type: Grant
    Filed: March 1, 2016
    Date of Patent: April 3, 2018
    Assignee: Futurewei Technologies, Inc.
    Inventors: Zongrong Liu, Qianfan Xu, Rongsheng Miao, Hongmin Chen, Xiao Shen, Yu Sheng Bai
  • Patent number: 9823499
    Abstract: A metal-oxide-semiconductor (MOS) type semiconductor device, comprising a silicon substrate, a first cathode electrode and a second cathode electrode coupled to the silicon substrate and located on distal ends of the silicon substrate, a poly-silicon (Poly-Si) gate proximally located above the silicon substrate and between the first cathode electrode and the second cathode electrode, wherein the Poly-Si gate comprises a first post extending orthogonally relative to the silicon substrate comprising a first doped silicon slab, a second post extending orthogonally relative to the silicon substrate comprising a second doped silicon slab, wherein the second post is positioned so as to create a width between the first post and the second post, an anode electrode coupled to the first post and the second post and extending laterally from the first post to the second post, and a dielectric layer disposed between the first silicon substrate and the second silicon substrate.
    Type: Grant
    Filed: October 27, 2016
    Date of Patent: November 21, 2017
    Assignee: Futurewei Technologies, Inc.
    Inventors: Qianfan Xu, Xiao Shen, Hongmin Chen