Patents by Inventor Hongzhi Zou

Hongzhi Zou has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210404015
    Abstract: A method of sample analysis is provided. In certain embodiments, the method involves: a) amplifying a product from a sample that comprises both wild type copies of a genomic locus and mutant copies of the genomic locus that have a point mutation relative to said wild type copies of the genomic locus, to produce an amplified sample, where: i. the amplifying is done using a first primer and a second primer; and ii. the first primer comprises a 3? terminal nucleotide that base pairs with the point mutation and also comprises a nucleotide sequence that is fully complementary to a sequence in the locus with the exception of a single base mismatch within 6 bases of the 3? terminal nucleotide; and b) detecting the presence of said product in said amplified sample using a flap assay that employs an invasive oligonucleotide. A kit for performing the method is also provided.
    Type: Application
    Filed: July 8, 2021
    Publication date: December 30, 2021
    Inventors: Hongzhi Zou, Graham P. Lidgard, Michael J. Domanico, Hatim Allawi
  • Patent number: 11091812
    Abstract: A method of sample analysis is provided. In certain embodiments, the method involves: a) amplifying a product from a sample that comprises both wild type copies of a genomic locus and mutant copies of the genomic locus that have a point mutation relative to said wild type copies of the genomic locus, to produce an amplified sample, where: i. the amplifying is done using a first primer and a second primer; and ii. the first primer comprises a 3? terminal nucleotide that base pairs with the point mutation and also comprises a nucleotide sequence that is fully complementary to a sequence in the locus with the exception of a single base mismatch within 6 bases of the 3? terminal nucleotide; and b) detecting the presence of said product in said amplified sample using a flap assay that employs an invasive oligonucleotide. A kit for performing the method is also provided.
    Type: Grant
    Filed: September 12, 2019
    Date of Patent: August 17, 2021
    Assignee: EXACT SCIENCES DEVELOPMENT COMPANY, LLC
    Inventors: Hongzhi Zou, Graham P. Lidgard, Michael J. Domanico, Hatim Allawi
  • Publication number: 20210222255
    Abstract: A method for detecting a methylated genomic locus is provided. In certain embodiments, the method comprises: a) treating a nucleic acid sample that contains both unmethylated and methylated copies of a genomic locus with an agent that modifies cytosine to uracil to produce a treated nucleic acid; b) amplifying a product from the treated nucleic acid using a first primer and a second primer, wherein the first primer hybridizes to a site in the locus that contain methylcytosines and the amplifying preferentially amplifies the methylated copies of the genomic locus, to produce an amplified sample; and c) detecting the presence of amplified methylated copies of the genomic locus in the amplified sample using a flap assay that employs an invasive oligonucleotide having a 3? terminal G or C nucleotide that corresponds to a site of methylation in the genomic locus.
    Type: Application
    Filed: February 8, 2021
    Publication date: July 22, 2021
    Inventors: Graham P. Lidgard, Michael J. Domanico, Hatim Allawi, Hongzhi Zou
  • Publication number: 20210207222
    Abstract: The present invention relates to the technical field of biology. Disclosed are a tumor marker, a methylation detection reagent, a kit and application thereof. Disclosed in the present invention is that: a colorectal cancer specimen can be distinguished from a fecal specimen of a normal person by detection a methylation level of COL4A1 gene promoter region. The present invention relates to detecting colorectal cancer by using the methylation detection reagent of the gene.
    Type: Application
    Filed: May 5, 2019
    Publication date: July 8, 2021
    Applicant: CREATIVE BIOSCIENCES (GUANGZHOU) CO., LTD
    Inventors: Xianglin LIU, Rongsong ZHAO, Hongzhi ZOU
  • Publication number: 20210189461
    Abstract: The present invention falls within the field of biotechnology, and a tumor marker, a methylation detection reagent, a kit and the use thereof are disclosed. Disclosed in the present invention is that: colorectal cancer specimens can be distinguished from normal human fecal specimens by detecting the methylation level of COL4A2 gene promoter region. The present invention uses a methylation detection reagent of the gene to detect colorectal cancer.
    Type: Application
    Filed: May 5, 2019
    Publication date: June 24, 2021
    Applicant: CREATIVE BIOSCIENCES (GUANGZHOU) CO., LTD.
    Inventors: Xianglin LIU, Rongsong ZHAO, Hongzhi ZOU
  • Publication number: 20210095350
    Abstract: The present invention relates to methods and compositions for determination of and uses of specific methylation patterns indicative of adenoma and carcinoma. In particular, the invention relates to analysis of defined CpG loci that are coordinately methylated in DNAs from cancer and adenoma samples, methods for identifying coordinately methylated loci, and methods of using analysis of coordinately methylated loci in one or more marker regions in the design of assays for adenoma and cancer.
    Type: Application
    Filed: November 23, 2020
    Publication date: April 1, 2021
    Inventors: David A. Ahlquist, William R. Taylor, Hongzhi Zou, Graham P. Lidgard
  • Publication number: 20210017577
    Abstract: Provided herein is technology relating to isolating nucleic acids. In particular, the technology relates to methods and kits for extracting nucleic acids from problematic samples such as stool.
    Type: Application
    Filed: September 29, 2020
    Publication date: January 21, 2021
    Inventors: Janelle J. Bruinsma, Michael J. Domanico, Graham P. Lidgard, Hongzhi Zou, William G. Weisburg, Hemanth D. Shenoi, James P. Light, II, Keith Kopitzke, John Zeis
  • Patent number: 10876168
    Abstract: The present invention discloses a tumor molecular detection/diagnostic reagent, which takes excrement as a detection sample and includes an SDC2 gene methylation detection reagent. The methylation level of the SDC2 gene detected in the excrement has an extremely high relevance to the onset of the colorectal cancer. The sensitivity of the SDC2 gene in the excrement is 87 percent and the specificity is up to 98 percent or even higher than that in tissue.
    Type: Grant
    Filed: December 13, 2016
    Date of Patent: December 29, 2020
    Assignee: CREATIVE BIOSCIENCES (GUANGZHOU) CO., LTD.
    Inventors: Hongzhi Zou, Feng Niu, Shan Wu, Rongsong Zhao, Hao Yu
  • Patent number: 10870893
    Abstract: The present invention relates to methods and compositions for determination of and uses of specific methylation patterns indicative of adenoma and carcinoma. In particular, the invention relates to analysis of defined CpG loci that are coordinately methylated in DNAs from cancer and adenoma samples, methods for identifying coordinately methylated loci, and methods of using analysis of coordinately methylated loci in one or more marker regions in the design of assays for adenoma and cancer.
    Type: Grant
    Filed: October 28, 2019
    Date of Patent: December 22, 2020
    Inventors: David A. Ahlquist, William R. Taylor, Hongzhi Zou, Graham P. Lidgard
  • Patent number: 10822639
    Abstract: Provided herein is technology relating to isolating nucleic acids. In particular, the technology relates to methods and kits for extracting nucleic acids from problematic samples such as stool.
    Type: Grant
    Filed: December 6, 2018
    Date of Patent: November 3, 2020
    Assignee: Exact Sciences Corporation
    Inventors: Janelle J. Bruinsma, Michael J. Domanico, Graham P. Lidgard, Hongzhi Zou, William G. Weisburg, Hemanth D. Shenoi, James P. Light, II, Keith Kopitzke, John Zeis
  • Publication number: 20200270706
    Abstract: Provided herein is reagent mixture comprising multiplexed amplification reagents and flap assay reagents for detecting, in a single reaction, mutant copies of the KRAS gene that contain any of the 34A, 34C, 34T, 35A, 35C, 35T or 38A point mutations. Methods that employ the reagent mix and kits for performing the same are also provided.
    Type: Application
    Filed: March 10, 2020
    Publication date: August 27, 2020
    Inventors: Rebecca Oldham-Haltom, Hatim Allawi, Hongzhi Zou, Michael J. Domanico, Graham P. Lidgard
  • Publication number: 20200248245
    Abstract: A cleavage-based real-time PCR assay method is provided. In general terms, the assay method includes subjecting a reaction mixture comprising a) PCR reagents for amplifying a nucleic acid target, and b) flap cleavage reagents for performing a flap cleavage assay on the amplified nucleic acid target to two sets of thermocycling conditions. No additional reagents are added to the reaction between said first and second sets of cycles and, in each cycle of the second set of cycles, cleavage of a flap probe is measured.
    Type: Application
    Filed: February 12, 2020
    Publication date: August 6, 2020
    Inventors: Rebecca Oldham-Haltom, Hongzhi Zou, Graham P. Lidgard, Michael J. Domanico, Hatim Allawi
  • Publication number: 20200149116
    Abstract: Provided are a detection kit and detection method for ITGA4 gene methylation. A primer and a probe provided by the present invention are matched, then detection can be carried out by taking a feces sample as an object, and thus the detection is simple, convenient and rapid. The detection can also be carried out on tissue specimens. Moreover, in the process of detecting the samples, the detection specificity and sensitivity are also improved. The experiment proves that for the feces specimen, when the specificity is 95.2%, the sensitivities of the methylated ITGA4 to intestinal cancer and adenoid tumor are 83.8% and 41.6%, respectively; and for the intestinal cancer tissue, when the specificity is 97.6% (40/41), the detection rates for colorectal cancer and adenoid tumor are 96.2% (101/105) and 71.6% (78/109), respectively. The effects are superior to the detection effects obtained by adopting other primers or probes.
    Type: Application
    Filed: December 26, 2017
    Publication date: May 14, 2020
    Inventors: Xianglin LIU, Hongzhi ZOU
  • Publication number: 20200131587
    Abstract: This document relates to methods and materials for detecting premalignant and malignant neoplasms. For example, methods and materials for determining whether or not a stool sample from a mammal contains nucleic acid markers or polypeptide markers of a neoplasm are provided.
    Type: Application
    Filed: January 9, 2020
    Publication date: April 30, 2020
    Inventors: William R. Taylor, Jonathan J. Harrington, Patrick S. Quint, Hongzhi Zou, Harold R. Bergen, III, David I. Smith, David A. Ahlquist
  • Publication number: 20200131585
    Abstract: The present invention provides methods and materials related to the detection of colorectal neoplasm-specific markers (e.g., markers associated with colorectal cancer, markers associated with adenoma) in or associated with a subject's stool sample. In particular, the present invention provides methods and materials for identifying mammals (e.g., humans) having a colorectal neoplasm by detecting the presence and level of indicators of colorectal neoplasia such as, for example, long DNA (e.g., quantified by Alu PCR) and the presence and level of tumor-associated gene alterations (e.g., mutations in KRAS, APC, melanoma antigen gene, p53, BRAF, BAT26, PIK3CA) or epigenetic alterations (e.g., DNA methylation) (e.g., CpG methylation) (e.g., CpG methylation in coding or regulatory regions of bmp-3, bmp-4, SFRP2, vimentin, septin9, ALX4, EYA4, TFPI2, NDRG4, FOXE1) in DNA from a stool sample obtained from the mammal.
    Type: Application
    Filed: October 8, 2019
    Publication date: April 30, 2020
    Inventors: Hongzhi Zou, David A. Ahlquist
  • Patent number: 10626465
    Abstract: Provided herein is reagent mixture comprising multiplexed amplification reagents and flap assay reagents for detecting, in a single reaction, mutant copies of the KRAS gene that contain any of the 34A, 34C, 34T, 35A, 35C, 35T or 38A point mutations. Methods that employ the reagent mix and kits for performing the same are also provided.
    Type: Grant
    Filed: August 27, 2018
    Date of Patent: April 21, 2020
    Assignee: EXACT SCIENCES DEVELOPMENT COMPANY, LLC
    Inventors: Rebecca Oldham-Haltom, Hatim Allawi, Hongzhi Zou, Michael J. Domanico, Graham P. Lidgard
  • Patent number: 10604793
    Abstract: A cleavage-based real-time PCR assay method is provided. In general terms, the assay method includes subjecting a reaction mixture comprising a) PCR reagents for amplifying a nucleic acid target, and b) flap cleavage reagents for performing a flap cleavage assay on the amplified nucleic acid target to two sets of thermocycling conditions. No additional reagents are added to the reaction between said first and second sets of cycles and, in each cycle of the second set of cycles, cleavage of a flap probe is measured.
    Type: Grant
    Filed: March 11, 2016
    Date of Patent: March 31, 2020
    Assignee: EXACT SCIENCES DEVELOPMENT COMPANY, LLC
    Inventors: Rebecca Oldham-Haltom, Hongzhi Zou, Graham P. Lidgard, Michael J. Domanico, Hatim Allawi
  • Patent number: 10590489
    Abstract: This document relates to methods and materials for detecting premalignant and malignant neoplasms. For example, methods and materials for determining whether or not a stool sample from a mammal contains nucleic acid markers or polypeptide markers of a neoplasm are provided.
    Type: Grant
    Filed: October 4, 2017
    Date of Patent: March 17, 2020
    Assignee: Mayo Foundation for Medical Education and Research
    Inventors: William R. Taylor, Jonathan J. Harrington, Patrick S. Quint, Hongzhi Zou, Harold R. Bergen, III, David I. Smith, David A. Ahlquist
  • Publication number: 20200048720
    Abstract: The present invention relates to methods and compositions for determination of and uses of specific methylation patterns indicative of adenoma and carcinoma. In particular, the invention relates to analysis of defined CpG loci that are coordinately methylated in DNAs from cancer and adenoma samples, methods for identifying coordinately methylated loci, and methods of using analysis of coordinately methylated loci in one or more marker regions in the design of assays for adenoma and cancer.
    Type: Application
    Filed: October 28, 2019
    Publication date: February 13, 2020
    Inventors: David A. Ahlquist, William R. Taylor, Hongzhi Zou, Graham P. Lidgard
  • Publication number: 20200002775
    Abstract: A method of sample analysis is provided. In certain embodiments, the method involves: a) amplifying a product from a sample that comprises both wild type copies of a genomic locus and mutant copies of the genomic locus that have a point mutation relative to said wild type copies of the genomic locus, to produce an amplified sample, where: i. the amplifying is done using a first primer and a second primer; and ii. the first primer comprises a 3? terminal nucleotide that base pairs with the point mutation and also comprises a nucleotide sequence that is fully complementary to a sequence in the locus with the exception of a single base mismatch within 6 bases of the 3? terminal nucleotide; and b) detecting the presence of said product in said amplified sample using a flap assay that employs an invasive oligonucleotide. A kit for performing the method is also provided.
    Type: Application
    Filed: September 12, 2019
    Publication date: January 2, 2020
    Inventors: Hongzhi Zou, Graham P. Lidgard, Michael J. Domanico, Hatim Allawi