Patents by Inventor Hood Chatham

Hood Chatham has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10526708
    Abstract: A method and apparatus are provided for plasma-based processing of a substrate based on a plasma source having a first, second and third electrodes disposed above a pedestal. The second electrode is disposed between the first and third electrodes. A first gap is formed between the first electrode and the pedestal and between the third electrode and the pedestal. A second gap is formed between the first and second electrodes, and a third gap is formed between the second and third electrodes. A first radio frequency (RF) power supply is connected to the first and third electrodes and is configured to predominantly deliver power to plasmas located in the first gap. A second RF power supply is connected to the second electrode and is configured to predominantly deliver power to plasmas located in the second and third gaps.
    Type: Grant
    Filed: March 12, 2018
    Date of Patent: January 7, 2020
    Assignee: AIXTRON SE
    Inventors: Stephen E. Savas, Carl Galewski, Hood Chatham, Sai Mantripragada, Allan Wiesnoski, Sooyun Joh
  • Publication number: 20180202046
    Abstract: A method and apparatus are provided for plasma-based processing of a substrate based on a plasma source having a first, second and third electrodes disposed above a pedestal. The second electrode is disposed between the first and third electrodes. A first gap is formed between the first electrode and the pedestal and between the third electrode and the pedestal. A second gap is formed between the first and second electrodes, and a third gap is formed between the second and third electrodes. A first radio frequency (RF) power supply is connected to the first and third electrodes and is configured to predominantly deliver power to plasmas located in the first gap. A second RF power supply is connected to the second electrode and is configured to predominantly deliver power to plasmas located in the second and third gaps.
    Type: Application
    Filed: March 12, 2018
    Publication date: July 19, 2018
    Inventors: Stephen E. Savas, Carl Galewski, Hood Chatham, Sai Mantripragada, Allan Wiesnoski, Sooyun Joh
  • Patent number: 9737905
    Abstract: An implantable or insertable medical device can include a silicone substrate and a plasma-enhanced chemical vapor deposition coating on the silicone substrate. The coating may include a silicon-containing compound. A method of forming the coating is also provided.
    Type: Grant
    Filed: October 9, 2015
    Date of Patent: August 22, 2017
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Mary M. Byron, Diana K. Ma, James P. Rohl, Hood Chatham, Frank De Francesco
  • Publication number: 20160289837
    Abstract: A method and apparatus are provided for plasma-based processing of a substrate based on a plasma source having at least two adjacent electrodes positioned with the long dimensions parallel to define a first minimum gap between the two electrodes of from 5 millimeters to 40 millimeters. A second minimum gap is defined between the two electrodes and the substrate. AC power is provided to the two electrodes through separate electrical circuits from a common supply with a phase difference therebetween. A first gas and a second gas are injected into the plasma-containing volume between the two electrodes at different positions relative to the substrate. A lower electrode with a lower electrode width that is less than the combined width of the two electrodes is powered from a separately controllable AC power supply at an AC frequency different from that supplied to the two electrodes.
    Type: Application
    Filed: June 1, 2016
    Publication date: October 6, 2016
    Inventors: Stephen E. Savas, Carl Galewski, Hood Chatham, Sai Mantripragada, Allan Wiesnoski, Sooyun Joh
  • Patent number: 9299956
    Abstract: A method is disclosed for forming leak-free coatings on polymeric or other surfaces that provide optical functions or protect underlying layers from exposure to oxygen and water vapor and do not crack or peel in outdoor environments. This method may include both cleaning and surface modification steps preceding coating. The combined method greatly reduces defects in any barrier layer and provides weatherability of coatings. Specific commercial applications that benefit from this include manufacturing of photovoltaic devices or organic light emitting diode (OLED) devices including lighting and displays.
    Type: Grant
    Filed: June 13, 2013
    Date of Patent: March 29, 2016
    Assignee: Aixtron, Inc.
    Inventors: Stephen E. Savas, Allan Wiesnoski, Hood Chatham, Carl Galewski
  • Publication number: 20160030975
    Abstract: An implantable or insertable medical device can include a silicone substrate and a plasma-enhanced chemical vapor deposition coating on the silicone substrate. The coating may include a silicon-containing compound. A method of forming the coating is also provided.
    Type: Application
    Filed: October 9, 2015
    Publication date: February 4, 2016
    Inventors: Mary M. Byron, Diana K. Ma, James P. Rohl, Hood Chatham, Frank De Francesco
  • Patent number: 9180289
    Abstract: An implantable or insertable medical device can include a silicone substrate and a plasma-enhanced chemical vapor deposition coating on the silicone substrate. The coating may include a silicon-containing compound. A method of forming the coating is also provided.
    Type: Grant
    Filed: August 9, 2013
    Date of Patent: November 10, 2015
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Mary M. Byron, Diana Ma, James P. Rohl, Hood Chatham, Frank De Francesco
  • Publication number: 20140067028
    Abstract: An implantable or insertable medical device can include a silicone substrate and a plasma-enhanced chemical vapor deposition coating on the silicone substrate. The coating may include a silicon-containing compound. A method of forming the coating is also provided.
    Type: Application
    Filed: August 9, 2013
    Publication date: March 6, 2014
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Mary M. Byron, Diana Ma, James P. Rohl, Hood Chatham, Frank De Francesco
  • Publication number: 20130334511
    Abstract: A method is disclosed for forming leak-free coatings on polymeric or other surfaces that provide optical functions or protect underlying layers from exposure to oxygen and water vapor and do not crack or peel in outdoor environments. This method may include both cleaning and surface modification steps preceding coating. The combined method greatly reduces defects in any barrier layer and provides weatherability of coatings. Specific commercial applications that benefit from this include manufacturing of photovoltaic devices or organic light emitting diode devices (OLED) including lighting and displays.
    Type: Application
    Filed: June 13, 2013
    Publication date: December 19, 2013
    Inventors: Stephen E. Savas, Allan Wiesnoski, Hood Chatham, Carl Galewski
  • Publication number: 20130337657
    Abstract: A method and apparatus are provided for plasma-based processing of a substrate based on a plasma source having at least two adjacent electrodes positioned with the long dimensions parallel to define a first gap minimum between the two electrodes of from 5 millimeters to 40 millimeters. A second gap minimum is defined between the two electrodes and the substrate. AC power is provided to the two electrodes through separate electrical circuits from a common supply with the phase difference therebetween. A first gas and a second are injected into the plasma-containing volume between the two electrodes are different positions relative to the substrate. A lower electrode with a lower electrode width that is less than the combined width of the two electrodes is powered from a separately controllable ac power supply at an ac frequency different from that supplied to the two electrodes.
    Type: Application
    Filed: June 19, 2013
    Publication date: December 19, 2013
    Inventors: Stephen E. Savas, Carl Galewski, Hood Chatham, Sai Mantripragada, Allan Wiesnoski, Sooyun Joh
  • Publication number: 20100117203
    Abstract: A process for forming an oxide-containing film from silicon is provided that includes heating the silicon substrates to a process temperature of between 250° C. and 1100° C. with admission into the process chamber of diatomic reductant source gas Z-Z? where Z and Z? are each H, D and T and a stable source of oxide ion. Multiple exhaust ports exist along the vertical extent of the process chamber to create reactant across flow. A batch of silicon substrates is provided having multiple silicon base layers, each of the silicon base layers having exposed <110> and <100> planes and a film residual stress associated with the film being formed at a temperature of less than 600° C. and having a <110> film thickness that exceeds a <100> film thickness on the <100> crystallographic plane by less than 20%, or a film characterized by thickness anisotropy less than 18% and an electrical breakdown field of greater than 10.5 MV/cm.
    Type: Application
    Filed: January 30, 2007
    Publication date: May 13, 2010
    Applicant: Aviza Technology, Inc.
    Inventors: Robert Jeffrey Bailey, Hood Chatham, Derrick Foster, Olivier Laparra, Martin Mogaard, Cole Porter, Taiquing T. Qiu, Helmuth Treichel
  • Patent number: 5364665
    Abstract: A plasma treating apparatus is useful for coating substrates with thin films having vapor barrier properties at relatively rapid deposition rates. The apparatus comprises an evacuable chamber, an electrically powered electrode defining a plasma-facing surface within the chamber, and a shield spaced a distance .DELTA. transverse to the plasma-facing surface. During plasma treatments, the plasma is confined to within distance .DELTA. while a substrate is continuously fed through the confined plasma.
    Type: Grant
    Filed: October 25, 1993
    Date of Patent: November 15, 1994
    Assignee: The BOC Group, Inc.
    Inventors: John T. Felts, Hood Chatham, III, Joseph Countrywood, Robert J. Nelson
  • Patent number: 5224441
    Abstract: A plasma treating apparatus is useful for coating substrates with thin films having vapor barrier properties at relatively rapid deposition rates. The apparatus comprises an evacuable chamber, an electrically powered electrode defining a plasma-facing surface within the chamber, and a shield spaced a distance .DELTA. transverse to the plasma-facing surface. During plasma treatments, the plasma is confined to within distance .DELTA. while a substrate is continuously fed through the confined plasma.
    Type: Grant
    Filed: September 27, 1991
    Date of Patent: July 6, 1993
    Assignee: The BOC Group, Inc.
    Inventors: John T. Felts, Hood Chatham, III, Joseph Countrywood, Robert J. Nelson