Patents by Inventor Horng-Shyang Chen

Horng-Shyang Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9478701
    Abstract: A semiconductor light-emitting device including a substrate, a first-type doped semiconductor structure, a light-emitting layer, and a second-type doped semiconductor layer is provided. The first-type doped semiconductor structure is located on the substrate and includes a base and multi-section rod structures extended upward from the base. Each multi-section rod structure includes rods and at least one connecting portion. The connecting portion connects adjacent rods along a first direction, wherein the first direction is perpendicular to the base and points to the connecting portion from the base. Cross-section areas of different rods on a reference plane parallel to the substrate are different, and cross-section areas of the connecting portion on the reference plane decrease along the first direction. The light-emitting layer is located on sidewalls of the rods. The second-type doped semiconductor layer is located on the light-emitting layer.
    Type: Grant
    Filed: April 30, 2014
    Date of Patent: October 25, 2016
    Assignee: National Taiwan University
    Inventors: Chih-Chung Yang, Che-Hao Liao, Charng-Gan Tu, Horng-Shyang Chen, Chia-Ying Su
  • Patent number: 9147805
    Abstract: A semiconductor device including a Si (110) substrate, a buffer layer, a first type doped semiconductor layer, a light-emitting layer and a second type doped semiconductor layer is provided. The Si (110) substrate has a plurality of trenches. Each trench at least extends along a first direction, and the first direction is parallel to a <1-10> crystal direction of the Si (110) substrate. The buffer layer is located on the Si (110) substrate and exposes the trenches. The first type doped semiconductor layer is located on the buffer layer and covers the trenches. The light-emitting layer is located on the first type doped semiconductor layer. The second type doped semiconductor layer is located on the light-emitting layer. A fabrication method of a semiconductor device is also provided.
    Type: Grant
    Filed: November 29, 2013
    Date of Patent: September 29, 2015
    Assignee: National Taiwan University
    Inventors: Chih-Chung Yang, Chun-Han Lin, Chia-Ying Su, Horng-Shyang Chen
  • Publication number: 20150263227
    Abstract: A semiconductor light-emitting device including a substrate, a first-type doped semiconductor structure, a light-emitting layer, and a second-type doped semiconductor layer is provided. The first-type doped semiconductor structure is located on the substrate and includes a base and multi-section rod structures extended upward from the base. Each multi-section rod structure includes rods and at least one connecting portion. The connecting portion connects adjacent rods along a first direction, wherein the first direction is perpendicular to the base and points to the connecting portion from the base. Cross-section areas of different rods on a reference plane parallel to the substrate are different, and cross-section areas of the connecting portion on the reference plane decrease along the first direction. The light-emitting layer is located on sidewalls of the rods. The second-type doped semiconductor layer is located on the light-emitting layer.
    Type: Application
    Filed: April 30, 2014
    Publication date: September 17, 2015
    Applicant: National Taiwan University
    Inventors: Chih-Chung Yang, Che-Hao Liao, Charng-Gan Tu, Horng-Shyang Chen, Chia-Ying Su
  • Publication number: 20150097209
    Abstract: A semiconductor device including a Si (110) substrate, a buffer layer, a first type doped semiconductor layer, a light-emitting layer and a second type doped semiconductor layer is provided. The Si (110) substrate has a plurality of trenches. Each trench at least extends along a first direction, and the first direction is parallel to a <1-10> crystal direction of the Si (110) substrate. The buffer layer is located on the Si (110) substrate and exposes the trenches. The first type doped semiconductor layer is located on the buffer layer and covers the trenches. The light-emitting layer is located on the first type doped semiconductor layer. The second type doped semiconductor layer is located on the light-emitting layer. A fabrication method of a semiconductor device is also provided.
    Type: Application
    Filed: November 29, 2013
    Publication date: April 9, 2015
    Applicant: National Taiwan University
    Inventors: Chih-Chung Yang, Chun-Han Lin, Chia-Ying Su, Horng-Shyang Chen
  • Patent number: 8759814
    Abstract: A semiconductor light-emitting device and a manufacturing method thereof are provided, wherein the semiconductor light-emitting device includes a first type doped semiconductor structure, a light-emitting layer, a second type doped semiconductor layer, a first conductive layer and a dielectric layer. The first type doped semiconductor structure includes a base and a plurality of columns extending outward from the base. Each of the columns includes a top surface and a plurality of sidewall surfaces. The light-emitting layer is disposed on the sidewall surfaces and the top surface, wherein the surface area of the light-emitting layer gradually changes from one side adjacent to the columns to a side away from the columns. The dielectric layer exposes the first conductive layer locating on the top surface of each of the columns, wherein the dielectric layer includes at least one of a plurality of quantum dots, phosphors, and metal nanoparticles.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: June 24, 2014
    Assignee: National Taiwan University
    Inventors: Chih-Chung Yang, Che-Hao Liao, Shao-Ying Ting, Horng-Shyang Chen, Wen-Ming Chang, Yu-Feng Yao, Chih-Yen Chen, Hao-Tsung Chen
  • Publication number: 20140042387
    Abstract: A semiconductor light-emitting device and a manufacturing method thereof are provided, wherein the semiconductor light-emitting device includes a first type doped semiconductor structure, a light-emitting layer, a second type doped semiconductor layer, a first conductive layer and a dielectric layer. The first type doped semiconductor structure includes a base and a plurality of columns extending outward from the base. Each of the columns includes a top surface and a plurality of sidewall surfaces. The light-emitting layer is disposed on the sidewall surfaces and the top surface, wherein the surface area of the light-emitting layer gradually changes from one side adjacent to the columns to a side away from the columns. The dielectric layer exposes the first conductive layer locating on the top surface of each of the columns, wherein the dielectric layer includes at least one of a plurality of quantum dots, phosphors, and metal nanoparticles.
    Type: Application
    Filed: September 13, 2012
    Publication date: February 13, 2014
    Applicant: NATIONAL TAIWAN UNIVERSITY
    Inventors: Chih-Chung Yang, Che-Hao Liao, Shao-Ying Ting, Horng-Shyang Chen, Wen-Ming Chang, Yu-Feng Yao, Chih-Yen Chen, Hao-Tsung Chen
  • Publication number: 20130256650
    Abstract: A semiconductor device and fabrication method thereof are provided, wherein the fabrication method of the semiconductor device includes the following steps. Forming a semiconductor layer on a substrate, wherein the semiconductor layer has a top surface and a bottom surface that is opposite to the top surface. The bottom surface is in contact with the substrate, and the top surface has a plurality of pits, the pits are extended from the top surface toward the bottom surface. Preparing a solution, wherein the solution includes a plurality of nanoparticles. Filling the nanoparticles into the pits. Forming a conducting layer on the semiconductor layer after filling the nanoparticles into the pits.
    Type: Application
    Filed: May 27, 2012
    Publication date: October 3, 2013
    Applicant: NATIONAL TAIWAN UNIVERSITY
    Inventors: Chih-Chung Yang, Horng-Shyang Chen, Shao-Ying Ting, Che-Hao Liao, Chih-Yen Chen, Chieh Hsieh, Hao-Tsung Chen, Yu-Feng Yao, Dong-Ming Yeh
  • Patent number: 7875478
    Abstract: A method for controlling the color contrast of a multi-wavelength light-emitting diode (LED) made according to the present invention is disclosed. The present invention includes at least the step of increasing the junction temperature of a multi-quantum-well LED, such that holes are distributed in a deeper quantum-well layer of the LED to increase luminous intensity of the deeper quantum-well layer, thereby controlling the relative intensity ratios of the multiple wavelengths emitted by the LED. The step of increasing junction temperature of the multi-quantum-well LED is achieved either by controlling resistance through modulating thickness of a p-type electrode layer of the LED or by modifying the mesa area size to control its relative heat radiation surface area.
    Type: Grant
    Filed: June 26, 2007
    Date of Patent: January 25, 2011
    Assignee: National Taiwan University
    Inventors: Dong-Ming Yeh, Horng-Shyang Chen, Chih-Feng Lu, Chi-Feng Huang, Tsung-Yi Tang, Jian-Jang Huang, Yen-Cheng Lu, Chih-Chung Yang, Jeng-Jie Huang, Yung-Sheng Chen
  • Publication number: 20080157056
    Abstract: A producing method of poly-wavelength light-emitting diode of utilizing nano-crystals and the light-emitting device thereof includes growing and processing a multiple-quantum-well layer based on stacking the mixture of at least two kinds of quantum wells to produce a two-wavelength light-emitting diode. Then, attaching nano-crystals on the two-wavelength light-emitting diode to transfer one of the wavelengths of the two-wavelength light-emitting diode to produce a poly-wavelength light-emitting diode. The device of the present invention can emit blue, green and red lights to produce white light.
    Type: Application
    Filed: June 26, 2007
    Publication date: July 3, 2008
    Inventors: Dong-Ming Yeh, Horng-Shyang Chen, Chih-Feng Lu, Chi-Feng Huang, Wen-Yu Shiao, Jian-Jang Huang, Yen-Cheng Lu, Chih-Chung Yang
  • Publication number: 20080124827
    Abstract: A method and structure for manufacturing long-wavelength visible light-emitting diode (LED) using the prestrained growth effect comprises the following steps: Growing a strained low-indium-content InGaN layer on the N-type GaN layer, and then growing a high-indium-content InGaN/GaN single- or multiple-quantum-well light-emitting structure on the low-indium-content InGaN layer to enhance the indium content of the high-indium quantum wells and hence to elongate the emission wavelength of the LED. The method of the invention can elongate emission wavelength of the LED by more than 50 nm (nanometer) such that an originally designated green LED can emit red light or orange light without influencing other electrical properties.
    Type: Application
    Filed: June 28, 2007
    Publication date: May 29, 2008
    Inventors: Chi-Feng Huang, Tsung-Yi Tang, Jeng-Jie Huang, Wen-Yu Shiao, Horng-Shyang Chen, Chih-Feng Lu, Jian-Jang Huang, Chih-Chung Yang
  • Publication number: 20080035909
    Abstract: A method for controlling the color contrast of a multi-wavelength light-emitting diode (LED) made according to the present invention is disclosed. The present invention includes at least the step of increasing the junction temperature of a multi-quantum-well LED, such that holes are distributed in a deeper quantum-well layer of the LED to increase luminous intensity of the deeper quantum-well layer, thereby controlling the relative intensity ratios of the multiple wavelengths emitted by the LED. The step of increasing junction temperature of the multi-quantum-well LED is achieved either by controlling resistance through modulating thickness of a p-type electrode layer of the LED or by modifying the mesa area size to control its relative heat radiation surface area.
    Type: Application
    Filed: June 26, 2007
    Publication date: February 14, 2008
    Inventors: Chih-Feng Lu, Horng-Shyang Chen, Dong-Ming Yeh, Chi-Feng Huang, Tsung-Yi Tang, Jian-Jang Huang, Yen-Cheng Lu, Chih-Chung Yang, Jeng-Jie Huang, Yung-Sheng Chen