Patents by Inventor Hsin-Ming Huang

Hsin-Ming Huang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10794592
    Abstract: An infrared ray generation mesh adapted to a combustion device comprising a mesh body which includes a first surface and a second surface positioned back-to-back, and a peripheral edge which has a first part and a second part on opposite sites. Wherein, the mesh body is bent or folded integrally to form a plurality of corrugations, each of the corrugations extending from the first part to the second part; and the mesh body is flame heated to generate infrared rays. Whereby, the infrared ray generation mesh improves accumulation of thermal energy generated by open fire, such that the heating range of infrared rays is getting wider and the infrared intensity per unit area is higher to achieve better heat control.
    Type: Grant
    Filed: October 18, 2018
    Date of Patent: October 6, 2020
    Assignee: GRAND MATE CO., LTD.
    Inventors: Chung-Chin Huang, Chin-Ying Huang, Hsin-Ming Huang, Hsing-Hsiung Huang, Yen-Jen Yeh, Kuan-Chou Lin
  • Publication number: 20200312983
    Abstract: A high electron mobility transistor (HEMT) includes a first III-V compound layer, a second III-V compound layer over the first III-V compound layer, source and drain structures over the second III-V compound layer and spaced apart from each other, a gate structure over the second III-V compound layer and between the source and drain structures, a gate field plate over the second III-V compound layer and between the gate structure and the drain structure, and an etch stop layer over the drain structure and spaced apart from the gate field plate.
    Type: Application
    Filed: June 15, 2020
    Publication date: October 1, 2020
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Jheng-Sheng YOU, Hsin-Chih LIN, Kun-Ming HUANG, Lieh-Chuan CHEN, Po-Tao CHU, Shen-Ping WANG, Chien-Li KUO
  • Publication number: 20200285026
    Abstract: The present disclosure provides an imaging optical lens assembly, including, in order from an object side to an image side: a first lens element with negative refractive power having an object-side surface being concave in a paraxial region, a second lens element with positive refractive power, a third lens element with negative refractive power, a fourth lens element with positive refractive power, and a fifth lens element with negative refractive power having an image-side surface being concave in a paraxial region and at least one convex shape in an off-axial region on the image-side surface, wherein the imaging optical lens assembly has a total of five lens elements.
    Type: Application
    Filed: May 27, 2020
    Publication date: September 10, 2020
    Inventors: KUAN-MING CHEN, HSIN-HSUAN HUANG
  • Patent number: 10753606
    Abstract: A gas burner includes a first tube and a second tube, wherein the first tube includes a first section and a second section which are connected to each other; the second section includes a chamber and an air outlet disposed at one side of the chamber; a cross-sectional area of the chamber of the second section is larger than a cross-sectional area of one end of the first section communicating with the second section. The second tube includes an air inlet section, a venturi section, and an extending section, wherein one end of the air inlet section includes an air inlet; the air inlet is adapted to supply gas; the venturi section is between the air inlet section and the extending section; the extending section extends into the chamber of the second section of the first tube and has a cross-sectional area small than the cross-sectional area of the chamber.
    Type: Grant
    Filed: July 19, 2018
    Date of Patent: August 25, 2020
    Assignee: GRAND MATE CO., LTD.
    Inventors: Chung-Chin Huang, Chin-Ying Huang, Hsin-Ming Huang, Hsing-Hsiung Huang, Yen-Jen Yeh, Kuan-Chou Lin
  • Publication number: 20200264409
    Abstract: An optical image capturing system includes, in order from an object side to an image side, a first lens element, a second lens element, a third lens element, a fourth lens element, a fifth lens element and a sixth lens element. The first lens element with positive refractive power has a convex object-side surface. The second lens element and the third lens element have refractive power. The fourth lens element with negative refractive power has a concave object-side surface and a convex image-side surface. The fifth lens element with positive refractive power has a convex object-side surface, wherein at least one inflection point is on at least one surface thereof. The sixth lens element with negative refractive power has a concave object-side surface. The surfaces of the fifth and the sixth lens elements are aspheric. The optical image capturing system has a total of six lens elements.
    Type: Application
    Filed: May 4, 2020
    Publication date: August 20, 2020
    Inventors: Kuan-Ming CHEN, Tsung-Han TSAI, Hsin-Hsuan HUANG, Chun-Che HSUEH
  • Patent number: 10736178
    Abstract: A connection method for a wireless system, wherein the wireless system includes an access point, an electronic device, a relay device and an appliance; the electronic device and the relay device are connected to the access point, respectively; the relay device is connected to the appliance via signals; the relay device is adapted to send control commands to the appliance; the connection method includes the following steps: sending a connection request command to a default IP address from the electronic device through the access point for at least one time; determining whether a connection-successful information is received from the default IP address or not. Then, establishing a connection between the electronic device and the relay device, or sending at least one connection request command to at least one different IP address in the same local area network from the electronic device.
    Type: Grant
    Filed: January 25, 2018
    Date of Patent: August 4, 2020
    Assignee: GRAND MATE CO., LTD.
    Inventors: Chung-Chin Huang, Chin-Ying Huang, Hsin-Ming Huang, Hsing-Hsiung Huang, Yen-Jen Yeh
  • Publication number: 20200237162
    Abstract: A cookware article includes a container, a fixed handle, and a removable handle. The fixed handle is mounted on a side wall of the container. The fixed handle has an opening for the removable handle to insert. A fixed portion and a grip portion are formed on two sides of the opening respectively. The removable handle has a grip segment and an engaging segment. The engaging segment has a first abutting portion, a second abutting portion, and a connecting portion between the first abutting portion and the second abutting portion. When the removable handle is engaged with the fixed handle through the engagement segment, the connecting portion is inserted in the opening so that the first abutting portion is abutted against the fixed portion, the second abutting portion is abutted against the grip portion. As such, the removable handle supports the container.
    Type: Application
    Filed: January 28, 2019
    Publication date: July 30, 2020
    Applicant: GRAND MATE CO., LTD.
    Inventors: CHUNG-CHIN HUANG, CHIN-YING HUANG, HSIN-MING HUANG, HSING-HSIUNG HUANG, YEN-JEN YEH
  • Publication number: 20200241259
    Abstract: An imaging optical lens system includes, in order from an object side to an image side, a first lens element, a second lens element, a third lens element, a fourth lens element, a fifth lens element and a sixth lens element. The first lens element has negative refractive power. The second lens element has an object-side surface being concave in a paraxial region thereof and an image-side surface being convex in a paraxial region thereof. The third lens element has positive refractive power. The fourth lens element has positive refractive power. The fifth lens element has negative refractive power. The sixth lens element has positive refractive power. The imaging optical lens system has a total of six lens elements.
    Type: Application
    Filed: April 16, 2020
    Publication date: July 30, 2020
    Applicant: LARGAN PRECISION CO., LTD.
    Inventors: Kuan-Ming Chen, Yu-Tai Tseng, Hsin-Hsuan Huang, Shu-Yun Yang
  • Publication number: 20200232651
    Abstract: The present invention provides an oven including an oven body with an exhaust port and a heat transfer assembly, disposed at a side of the oven body, that includes a top plate and a bottom plate connected by two side plates, and a sealing plate to form an air passage therebetween. The air passage has a first opening near the sealing plate and a second opening away from the sealing plate. The first opening communicates with the exhaust port of the oven body, and the second opening opens to the external of the heat transfer assembly which is arranged so the hot air from the exhaust port may enter the interior of the heat transfer assembly so that the heat energy of the hot air can be absorbed by the top plate and then conducted to the food materials on the top plate to be reused.
    Type: Application
    Filed: January 23, 2019
    Publication date: July 23, 2020
    Applicant: GRAND MATE CO., LTD.
    Inventors: Chung-Chin Huang, Chin-Ying Huang, Hsin-Ming Huang, Hsing-Hsiung Huang, Yen-Jen Yeh, Kuan-Chou Lin
  • Patent number: 10718517
    Abstract: A gas appliance includes a burner, a gas valve, an ignitor, a thermocouple, and a control device, wherein the control device is adapted to execute a control method comprising the following steps: controlling the ignitor to ignite and the gas valve to open; receiving a sensing voltage output from the thermocouple; stop the ignitor from igniting and controlling the gas valve to keep a gas pipe be in an open state when the sensing voltage increases to a first voltage; receiving the sensing voltage output from the thermocouple continuously, and controlling the gas valve to block the gas pipe when the sensing voltage decreases from higher than a second voltage to lower than the second voltage, wherein the second voltage is higher than the first voltage. Whereby, an ignition procedure could be speeded up and the gas could be blocked earlier as the flames are extinguished.
    Type: Grant
    Filed: May 3, 2018
    Date of Patent: July 21, 2020
    Assignee: GRAND MATE CO., LTD.
    Inventors: Chung-Chin Huang, Chin-Ying Huang, Hsin-Ming Huang, Hsing-Hsiung Huang, Yen-Jen Yeh
  • Patent number: 10714528
    Abstract: A chip package includes a chip structure, a molding material, a conductive layer, a redistribution layer, and a passivation layer. The chip structure has a front surface, a rear surface, a sidewall, a sensing area, and a conductive pad. The molding material covers the rear surface and the sidewall. The conductive layer extends form the conductive pad to the molding material located on the sidewall. The redistribution layer extends form the molding material that is located on the rear surface to the molding material that is located on the sidewall. The redistribution layer is in electrical contact with an end of the conductive layer facing away from the conductive pad. The passivation layer is located on the molding material and the redistribution layer. The passivation layer has an opening, and a portion of the redistribution layer is located in the opening.
    Type: Grant
    Filed: November 1, 2018
    Date of Patent: July 14, 2020
    Assignee: XINTEC INC.
    Inventors: Hsin Kuan, Shih-Kuang Chen, Chin-Ching Huang, Chia-Ming Cheng
  • Patent number: 10705316
    Abstract: The present disclosure provides an imaging optical lens assembly, including, in order from an object side to an image side: a first lens element with negative refractive power having an object-side surface being concave in a paraxial region, a second lens element with positive refractive power, a third lens element with negative refractive power, a fourth lens element with positive refractive power, and a fifth lens element with negative refractive power having an image-side surface being concave in a paraxial region and at least one convex shape in an off-axial region on the image-side surface, wherein the imaging optical lens assembly has a total of five lens elements.
    Type: Grant
    Filed: February 6, 2019
    Date of Patent: July 7, 2020
    Assignee: LARGAN PRECISION CO., LTD.
    Inventors: Kuan-Ming Chen, Hsin-Hsuan Huang
  • Patent number: 10686054
    Abstract: A semiconductor device includes a first III-V compound layer, a second III-V compound layer over the first III-V compound layer, a source contact and a drain contact over the second III-V compound layer, a gate contact over the second III-V compound layer and between the source contact and the drain contact, a gate field plate over the second III-V compound layer, a first etch stop layer over the source contact, and a second etch stop layer over the drain contact and separated from the first etch stop layer.
    Type: Grant
    Filed: November 19, 2018
    Date of Patent: June 16, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Jheng-Sheng You, Hsin-Chih Lin, Kun-Ming Huang, Lieh-Chuan Chen, Po-Tao Chu, Shen-Ping Wang, Chien-Li Kuo
  • Patent number: 10678028
    Abstract: An optical image capturing system includes, in order from an object side to an image side, a first lens element, a second lens element, a third lens element, a fourth lens element, a fifth lens element and a sixth lens element. The first lens element with positive refractive power has a convex object-side surface. The second lens element and the third lens element have refractive power. The fourth lens element with negative refractive power has a concave object-side surface and a convex image-side surface. The fifth lens element with positive refractive power has a convex object-side surface, wherein at least one inflection point is on at least one surface thereof. The sixth lens element with negative refractive power has a concave object-side surface. The surfaces of the fifth and the sixth lens elements are aspheric. The optical image capturing system has a total of six lens elements.
    Type: Grant
    Filed: March 18, 2019
    Date of Patent: June 9, 2020
    Assignee: LARGAN PRECISION CO., LTD.
    Inventors: Kuan-Ming Chen, Tsung-Han Tsai, Hsin-Hsuan Huang, Chun-Che Hsueh
  • Publication number: 20200166209
    Abstract: A smoke removal device, which can burn the particulates in the smoke efficiently, includes a tube body and a combustion unit. The combustion unit is provided in the tube body and includes a main body, a gas pipeline, and a lighter. The main body is located at a first end of the tube body. A smoke passage is formed between a periphery of the main body and an inner wall of the tube body, and the smoke enters the smoke removal device through the smoke passage. The main body has a central passage therethrough, where a fuel gas is ignited. The fuel gas is guided to the central passage through the gas pipeline and then ignited by the lighter to burn the smoke particulates passing through the smoke passage.
    Type: Application
    Filed: November 27, 2018
    Publication date: May 28, 2020
    Applicant: GRAND MATE CO., LTD.
    Inventors: CHUNG-CHIN HUANG, CHIN-YING HUANG, HSIN-MING HUANG, HSING-HSIUNG HUANG, YEN-JEN YEH, KUAN-CHOU LIN
  • Patent number: 10663696
    Abstract: An imaging optical lens system includes, in order from an object side to an image side, a first lens element, a second lens element, a third lens element, a fourth lens element, a fifth lens element and a sixth lens element. The first lens element has negative refractive power. The second lens element has an object-side surface being concave in a paraxial region thereof and an image-side surface being convex in a paraxial region thereof. The third lens element has positive refractive power. The fourth lens element has positive refractive power. The fifth lens element has negative refractive power. The sixth lens element has positive refractive power. The imaging optical lens system has a total of six lens elements.
    Type: Grant
    Filed: January 10, 2019
    Date of Patent: May 26, 2020
    Assignee: LARGAN PRECISION CO., LTD.
    Inventors: Kuan-Ming Chen, Yu-Tai Tseng, Hsin-Hsuan Huang, Shu-Yun Yang
  • Publication number: 20200150390
    Abstract: A micro imaging system includes, in order from an object side to an image side: a first lens element having negative refractive power; a second lens element having positive refractive power; and a third lens element with negative refractive power having an object-side surface being concave in a paraxial region thereof. There are a total of three lens elements in the micro imaging system.
    Type: Application
    Filed: January 14, 2020
    Publication date: May 14, 2020
    Inventors: KUAN-MING CHEN, HSIN-HSUAN HUANG
  • Patent number: 10649735
    Abstract: A security system with entropy bits includes a physically unclonable function circuit, and a security key generator. The physically unclonable function circuit provides a plurality of entropy bit strings. The security key generator generates a security key by manipulating a manipulation bit string derived from the plurality of entropy bit strings according to an operation entropy bit string. Each bit of the operation entropy bit string is used to determine whether to perform a corresponding operation to the manipulation bit string.
    Type: Grant
    Filed: March 8, 2018
    Date of Patent: May 12, 2020
    Assignee: eMemory Technology Inc.
    Inventors: Hsin-Ming Chen, Meng-Yi Wu, Po-Hao Huang
  • Patent number: D887767
    Type: Grant
    Filed: March 5, 2019
    Date of Patent: June 23, 2020
    Assignee: GRAND MATE CO., LTD.
    Inventors: Chung-Chin Huang, Chin-Ying Huang, Hsin-Ming Huang, Hsing-Hsiung Huang, Yen-Jen Yeh, Kuan-Chou Lin, Tang-Yuan Luo
  • Patent number: D897142
    Type: Grant
    Filed: March 8, 2019
    Date of Patent: September 29, 2020
    Assignee: GRAND MATE CO., LTD.
    Inventors: Chung-Chin Huang, Chin-Ying Huang, Hsin-Ming Huang, Hsing-Hsiung Huang, Yen-Jen Yeh, Kuan-Chou Lin, Tang-Yuan Luo