Patents by Inventor Huatan Qiu

Huatan Qiu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11920239
    Abstract: Certain embodiments herein relate to an apparatus used for remote plasma processing. In various embodiments, the apparatus includes a reaction chamber that is conditioned by forming a low recombination material coating on interior chamber surfaces. The low recombination material helps minimize the degree of radical recombination that occurs when the reaction chamber is used to process substrates. During processing on substrates, the low recombination material may become covered by relatively higher recombination material (e.g., as a byproduct of the substrate processing), which results in a decrease in the amount of radicals available to process the substrate over time. The low recombination material coating may be reconditioned through exposure to an oxidizing plasma, which acts to reform the low recombination material coating. The reconditioning process may occur periodically as additional processing occurs on substrates.
    Type: Grant
    Filed: January 26, 2022
    Date of Patent: March 5, 2024
    Assignee: Lam Research Corporation
    Inventors: Bhadri N. Varadarajan, Bo Gong, Rachel E. Batzer, Huatan Qiu, Bart J. Van Schravendijk, Geoffrey Hohn
  • Publication number: 20240003008
    Abstract: A precursor dispensing system includes a source, an ampoule, a first valve, a second valve, a line charge volume container and a controller. The source supplies a liquid precursor. The ampoule receives the liquid precursor from the source. The first valve adjusts flow of the liquid precursor from the source to the ampoule. The second valve adjusts flow of a precursor vapor from the ampoule to a showerhead of a substrate processing chamber. The line charge volume container is connected to a conduit and stores a charge of the precursor vapor, where the conduit extends from the ampoule to the second valve. The controller: opens the first valve and closes the second valve to precharge the line charge volume container; and during a dose operation, open the second valve to dispense a bulk amount of the precursor vapor from the line charge volume container and into the substrate processing chamber.
    Type: Application
    Filed: December 1, 2021
    Publication date: January 4, 2024
    Inventors: Saangrut SANGPLUG, Aaron DURBIN, Murthi MURUGAIYAN, Aaron Blake MILLER, Huatan QIU, Gopinath BHIMARASETTI, Vikrant RAI, Vincent WILSON
  • Publication number: 20230332291
    Abstract: A showerhead comprises first, second, and third components. The first component includes a disc-shaped portion and a cylindrical portion extending perpendicularly from the disc-shaped portion. The disc-shaped portion includes first and second sets of holes having first and second diameters, respectively, that extend from a center of the disc-shaped portion to an inner diameter of the cylindrical portion. The second component is disc-shaped and is attached to the disc-shaped portion of the first component, defines a plenum that is in fluid communication with the second set of holes, and includes a pair of arc-shaped grooves along a periphery and on opposite ends of the top surface and a plurality of grooves extending between the pair of arc-shaped grooves. The third component is disc-shaped, is attached to the second component, and includes a gas inlet connected to the plenum, and fluid inlet and outlet connected to the arc-shaped grooves.
    Type: Application
    Filed: September 21, 2021
    Publication date: October 19, 2023
    Inventors: Bhadri VARADARAJAN, Aaron DURBIN, Huatan QIU, Bo GONG, Rachel E. BATZER, Gopinath BHIMARASETTI, Aaron Blake MILLER, Patrick G. BREILING, Geoffrey HOHN
  • Publication number: 20230304156
    Abstract: An assembly for use in a process chamber for depositing a film on a wafer. The assembly includes a pedestal having a pedestal top surface extending from a central axis of the pedestal to an outer edge, the pedestal top surface having a plurality of wafer supports for supporting a wafer. A pedestal step having a step surface extending from a step inner diameter towards the outer edge of the pedestal. A focus ring rests on the step surface and having a mesa extending from an outer diameter of the focus ring to a mesa inner diameter. A shelf steps downwards from a mesa surface at the mesa inner diameter, and extends between the mesa inner diameter and an inner diameter of the focus ring. The shelf is configured to support at least a portion of a wafer bottom surface of the wafer at a process temperature.
    Type: Application
    Filed: June 1, 2023
    Publication date: September 28, 2023
    Inventors: Geoffrey HOHN, Huatan QIU, Rachel E. BATZER, Guangbi YUAN, Zhe GUI
  • Patent number: 11702748
    Abstract: An assembly for use in a process chamber for depositing a film on a wafer. The assembly includes a pedestal having a pedestal top surface extending from a central axis of the pedestal to an outer edge, the pedestal top surface having a plurality of wafer supports for supporting a wafer. A pedestal step having a step surface extending from a step inner diameter towards the outer edge of the pedestal. A focus ring rests on the step surface and having a mesa extending from an outer diameter of the focus ring to a mesa inner diameter. A shelf steps downwards from a mesa surface at the mesa inner diameter, and extends between the mesa inner diameter and an inner diameter of the focus ring. The shelf is configured to support at least a portion of a wafer bottom surface of the wafer at a process temperature.
    Type: Grant
    Filed: March 3, 2017
    Date of Patent: July 18, 2023
    Assignee: Lam Research Corporation
    Inventors: Geoffrey Hohn, Huatan Qiu, Rachel Batzer, Guangbi Yuan, Zhe Gui
  • Publication number: 20230223238
    Abstract: An apparatus for forming a plasma may include one or more coupling ports to accept and RF current. The apparatus may additionally include a receptacle to accommodate one or more gases, in which the receptacle is oriented along a first axis. The apparatus may additionally include an RF coupling structure, oriented in a plane and substantially surrounding the receptacle, the RF coupling structure can be configured to conduct an RF current to bring about formation of the plasma within the receptacle. The apparatus may further include one or more linkages, coupled to the RF coupling structure, which may permit the plane of the RF coupling structure to pivot about a second axis so as to tilt the plane of the RF coupling structure toward the first axis.
    Type: Application
    Filed: April 30, 2021
    Publication date: July 13, 2023
    Inventors: Tongtong Guo, Rachel E. Batzer, Huatan Qiu, Lee Chen, Bo Gong, Zhe Gui
  • Publication number: 20230175134
    Abstract: A substrate processing system includes a first chamber including a substrate support. A showerhead is arranged above the first chamber and is configured to filter ions and deliver radicals from a plasma source to the first chamber. The showerhead includes a heat transfer fluid plenum, a secondary gas plenum including an inlet to receive secondary gas and a plurality of secondary gas injectors to inject the secondary gas into the first chamber, and a plurality of through holes passing through the showerhead. The through holes are not in fluid communication with the heat transfer fluid plenum or the secondary gas plenum.
    Type: Application
    Filed: February 2, 2023
    Publication date: June 8, 2023
    Inventors: Rachel E. BATZER, Huatan QIU, Bhadri N. VARADARAJAN, Patrick Girard BREILING, Bo GONG, Will SCHLOSSER, Zhe GUI, Taide TAN, Geoffrey HOHN
  • Patent number: 11608559
    Abstract: A substrate processing system includes a first chamber including a substrate support. A showerhead is arranged above the first chamber and is configured to filter ions and deliver radicals from a plasma source to the first chamber. The showerhead includes a heat transfer fluid plenum, a secondary gas plenum including an inlet to receive secondary gas and a plurality of secondary gas injectors to inject the secondary gas into the first chamber, and a plurality of through holes passing through the showerhead. The through holes are not in fluid communication with the heat transfer fluid plenum or the secondary gas plenum.
    Type: Grant
    Filed: August 12, 2021
    Date of Patent: March 21, 2023
    Assignee: Lam Research Corporation
    Inventors: Rachel Batzer, Huatan Qiu, Bhadri Varadarajan, Patrick Girard Breiling, Bo Gong, Will Schlosser, Zhe Gui, Taide Tan, Geoffrey Hohn
  • Patent number: 11557460
    Abstract: A multi-signal radio frequency (RF) source includes an RF source; and a switch including an input in communication with an output of the RF source, a first output and a second output. The switch is configured to selectively connect the input to one of the first output and the second output. An RF generator in communication with the first output of the multi-signal RF source is configured to generate plasma in a processing chamber. A remote plasma generator in communication with the second output of the multi-signal RF source is configured to supply remote plasma to the processing chamber.
    Type: Grant
    Filed: July 8, 2019
    Date of Patent: January 17, 2023
    Assignee: Lam Research Corporation
    Inventors: Eller Y. Juco, Karl Frederick Leeser, Huatan Qiu
  • Publication number: 20230002891
    Abstract: Forming a protective coating ex situ in an atomic layer deposition process to coat one or more chamber components subsequently installed in a reaction chamber provides a number of benefits over more conventional coating methods such as in situ deposition of an undercoat. In certain cases the protective coating may have a particular composition such as aluminum oxide, aluminum fluoride, aluminum nitride, yttrium oxide, and/or yttrium fluoride. The protective coating may help reduce contamination on wafers processed using the coated chamber component. Further, the protective coating may act to stabilize the processing conditions within the reaction chamber, thereby achieving very stable/uniform processing results over the course of processing many batches of wafers, and minimizing radical loss. Also described are a number of techniques that may be used to restore the protective coating after the coated chamber component is used to process semiconductor wafers.
    Type: Application
    Filed: September 7, 2022
    Publication date: January 5, 2023
    Inventors: Damodar Rajaram SHANBHAG, Guangbi YUAN, Thadeous BAMFORD, Curtis Warren BAILEY, Tony KAUSHAL, Krishna BIRRU, William SCHLOSSER, Bo GONG, Huatan QIU, Fengyuan LAI, Leonard Wai Fung KHO, Anand CHANDRASHEKAR, Andrew H. BRENINGER, Chen-Hua HSU, Geoffrey HOHN, Gang LIU, Rohit KHARE
  • Publication number: 20230005776
    Abstract: A system includes a plurality of spindle arms located above a plurality of stations in a processing chamber to transport a semiconductor substrate between the stations. The spindle arms reside in the processing chamber during processing of the semiconductor substrate. The system comprises first gas lines arranged below the stations to supply a purge gas. The system comprises second gas lines extending upwards from the first gas lines to supply the purge gas to the spindle arms during the processing of the semiconductor substrate in the processing chamber.
    Type: Application
    Filed: December 16, 2020
    Publication date: January 5, 2023
    Inventors: Prasanna KULKARNI, Huatan QIU, Brian Joseph WILLIAMS, Ted TAN
  • Publication number: 20220275504
    Abstract: Forming a protective coating ex situ in an atomic layer deposition process to coat one or more chamber components subsequently installed in a reaction chamber provides a number of benefits over more conventional coating methods such as in situ deposition of an undercoat. In certain cases the protective coating may have a particular composition such as aluminum oxide, aluminum fluoride, aluminum nitride, yttrium oxide, and/or yttrium fluoride. The protective coating may help reduce contamination on wafers processed using the coated chamber component. Further, the protective coating may act to stabilize the processing conditions within the reaction chamber, thereby achieving very stable/uniform processing results over the course of processing many batches of wafers, and minimizing radical loss. Also described are a number of techniques that may be used to restore the protective coating after the coated chamber component is used to process semiconductor wafers.
    Type: Application
    Filed: May 16, 2022
    Publication date: September 1, 2022
    Inventors: Damodar Rajaram SHANBHAG, Guangbi YUAN, Thadeous BAMFORD, Curtis Warren BAILEY, Tony KAUSHAL, Krishna BIRRU, William SCHLOSSER, Bo GONG, Huatan QIU, Fengyuan LAI, Leonard Wai Fung KHO, Anand CHANDRASHEKAR, Andrew H. BRENINGER, Chen-Hua HSU, Geoffrey HOHN, Gang LIU, Rohit KHARE
  • Patent number: 11365479
    Abstract: Forming a protective coating ex situ in an atomic layer deposition process to coat one or more chamber components subsequently installed in a reaction chamber provides a number of benefits over more conventional coating methods such as in situ deposition of an undercoat. In certain cases the protective coating may have a particular composition such as aluminum oxide, aluminum fluoride, aluminum nitride, yttrium oxide, and/or yttrium fluoride. The protective coating may help reduce contamination on wafers processed using the coated chamber component. Further, the protective coating may act to stabilize the processing conditions within the reaction chamber, thereby achieving very stable/uniform processing results over the course of processing many batches of wafers, and minimizing radical loss. Also described are a number of techniques that may be used to restore the protective coating after the coated chamber component is used to process semiconductor wafers.
    Type: Grant
    Filed: July 22, 2020
    Date of Patent: June 21, 2022
    Assignee: Lam Research Corporation
    Inventors: Damodar Shanbhag, Guangbi Yuan, Thadeous Bamford, Curtis Warren Bailey, Tony Kaushal, Krishna Birru, William Schlosser, Bo Gong, Huatan Qiu, Fengyuan Lai, Leonard Wai Fung Kho, Anand Chandrashekar, Andrew H. Breninger, Chen-Hua Hsu, Geoffrey Hohn, Gang Liu, Rohit Khare
  • Publication number: 20220145459
    Abstract: Certain embodiments herein relate to an apparatus used for remote plasma processing. In various embodiments, the apparatus includes a reaction chamber that is conditioned by forming a low recombination material coating on interior chamber surfaces. The low recombination material helps minimize the degree of radical recombination that occurs when the reaction chamber is used to process substrates. During processing on substrates, the low recombination material may become covered by relatively higher recombination material (e.g., as a byproduct of the substrate processing), which results in a decrease in the amount of radicals available to process the substrate over time. The low recombination material coating may be reconditioned through exposure to an oxidizing plasma, which acts to reform the low recombination material coating. The reconditioning process may occur periodically as additional processing occurs on substrates.
    Type: Application
    Filed: January 26, 2022
    Publication date: May 12, 2022
    Inventors: Bhadri N. VARADARAJAN, Bo GONG, Rachel E. BATZER, Huatan QIU, Bart J. VAN SCHRAVENDIJK, Geoffrey HOHN
  • Publication number: 20210384028
    Abstract: A method for depositing a silicon nitride layer on a stack is provided. The method comprises providing an atomic layer deposition, comprising a plurality of cycles, wherein each cycle comprises dosing the stack with a silicon containing precursor by providing a silicon containing precursor gas, providing an N2 plasma conversion, and providing an H2 plasma conversion.
    Type: Application
    Filed: October 11, 2019
    Publication date: December 9, 2021
    Inventors: James S. SIMS, Shane TANG, Vikrant RAI, Andrew MCKERROW, Huatan QIU
  • Publication number: 20210371982
    Abstract: A substrate processing system includes a first chamber including a substrate support. A showerhead is arranged above the first chamber and is configured to filter ions and deliver radicals from a plasma source to the first chamber. The showerhead includes a heat transfer fluid plenum, a secondary gas plenum including an inlet to receive secondary gas and a plurality of secondary gas injectors to inject the secondary gas into the first chamber, and a plurality of through holes passing through the showerhead. The through holes are not in fluid communication with the heat transfer fluid plenum or the secondary gas plenum.
    Type: Application
    Filed: August 12, 2021
    Publication date: December 2, 2021
    Inventors: Rachel BATZER, Huatan Qiu, Bhadri Varadarajan, Patrick Girard Breiling, Bo Gong, Will Schlosser, Zhe Gui, Taide Tan, Geoffrey Hohn
  • Patent number: 11101164
    Abstract: A substrate processing system includes a first chamber including a substrate support. A showerhead is arranged above the first chamber and is configured to filter ions and deliver radicals from a plasma source to the first chamber. The showerhead includes a heat transfer fluid plenum, a secondary gas plenum including an inlet to receive secondary gas and a plurality of secondary gas injectors to inject the secondary gas into the first chamber, and a plurality of through holes passing through the showerhead. The through holes are not in fluid communication with the heat transfer fluid plenum or the secondary gas plenum.
    Type: Grant
    Filed: March 16, 2020
    Date of Patent: August 24, 2021
    Assignee: LAM RESEARCH CORPORATION
    Inventors: Rachel Batzer, Huatan Qiu, Bhadri Varadarajan, Patrick Girard Breiling, Bo Gong, Will Schlosser, Zhe Gui, Taide Tan, Geoffrey Hohn
  • Publication number: 20210257188
    Abstract: A multi-signal radio frequency (RF) source includes an RF source; and a switch including an input in communication with an output of the RF source, a first output and a second output. The switch is configured to selectively connect the input to one of the first output and the second output. An RF generator in communication with the first output of the multi-signal RF source is configured to generate plasma in a processing chamber. A remote plasma generator in communication with the second output of the multi-signal RF source is configured to supply remote plasma to the processing chamber.
    Type: Application
    Filed: July 8, 2019
    Publication date: August 19, 2021
    Inventors: Eller Y. JUCO, Karl Frederick LEESER, Huatan QIU
  • Patent number: 11004662
    Abstract: A system for processing a substrate includes a chamber having a chamber wall that defines a lower chamber portion and an upper chamber wall that defines an upper chamber portion. A showerhead is disposed in the upper chamber portion. A pedestal with a support for the substrate is disposed in the lower chamber portion and oriented below the showerhead, such that a processing region is defined between the support of the pedestal and the showerhead. A spacer is disposed between the showerhead and the lower chamber wall of the lower chamber portion. The spacer is defined by an annular body that includes a vertical component. The annular body also includes a side extension that is disposed outside of the processing region and projects radially away from the vertical component. The annular body includes a groove that is formed in the side extension so as to surround the vertical component of the annular body. A heating element is embedded in the groove of the side extension.
    Type: Grant
    Filed: February 14, 2017
    Date of Patent: May 11, 2021
    Assignee: Lam Research Corporation
    Inventors: Taide Tan, Huatan Qiu, Ryan Senff
  • Publication number: 20200347497
    Abstract: Forming a protective coating ex situ in an atomic layer deposition process to coat one or more chamber components subsequently installed in a reaction chamber provides a number of benefits over more conventional coating methods such as in situ deposition of an undercoat. In certain cases the protective coating may have a particular composition such as aluminum oxide, aluminum fluoride, aluminum nitride, yttrium oxide, and/or yttrium fluoride. The protective coating may help reduce contamination on wafers processed using the coated chamber component. Further, the protective coating may act to stabilize the processing conditions within the reaction chamber, thereby achieving very stable/uniform processing results over the course of processing many batches of wafers, and minimizing radical loss. Also described are a number of techniques that may be used to restore the protective coating after the coated chamber component is used to process semiconductor wafers.
    Type: Application
    Filed: July 22, 2020
    Publication date: November 5, 2020
    Inventors: Damodar Shanbhag, Guangbi Yuan, Thadeous Bamford, Curtis Warren Bailey, Tony Kaushal, Krishna Birru, William Schlosser, Bo Gong, Huatan Qiu, Fengyuan Lai, Leonard Wai Fung Kho, Anand Chandrashekar, Andrew H. Breninger, Chen-Hua Hsu, Geoffrey Hohn, Gang Liu, Rohit Khare