Patents by Inventor Huishao HE

Huishao HE has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10775320
    Abstract: The present disclosure discloses an afterglow detection device and an afterglow detection method. The afterglow detection device comprises: an X-ray tube for emitting an X-ray beam; a first reading circuit for receiving a first detected signal from a to-be-detected detector to form and output a first measurement signal according to the first detected signal, the to-be-detected detector being connected to the first reading circuit and disposed on a beam-out side of the X-ray tube to receive radiation of the X-ray beam and outputting the first detected signal to the first reading circuit at the time of detection; a residual ray detector disposed on a beam-out side of the X-ray tube; a second reading circuit connected to the residual ray detector for receiving a second detected signal from the residual ray detector to form and output a second measurement signal according to the second detected signal.
    Type: Grant
    Filed: May 5, 2019
    Date of Patent: September 15, 2020
    Assignee: NUCTECH COMPANY LIMITED
    Inventors: Shuwei Li, Wenjian Zhang, Xiang Zou, Bozhen Zhao, Qingjun Zhang, Huishao He, Yongqiang Wang, Yanchun Wang
  • Patent number: 10539531
    Abstract: A detection apparatus and a detection method are disclosed. In one aspect, the detection apparatus includes a sampling device for collecting samples to be checked. It further includes a sample pre-processing device configured to pre-process the sample from the sampling device. It further includes a sample analyzing device for separating samples from the pre-processing device and for analyzing the separated samples. The detection apparatus is miniaturized and highly precise, and is capable of quickly and accurately detecting gaseous phase or particulate substances, and it has applications for safety inspections at airports, ports, and subway stations.
    Type: Grant
    Filed: April 5, 2019
    Date of Patent: January 21, 2020
    Assignee: Nuctech Company Limited
    Inventors: Qingjun Zhang, Yuanjing Li, Zhiqiang Chen, Ziran Zhao, Yinong Liu, Yaohong Liu, Huishao He, Qiufeng Ma, Weiping Zhu, Xiang Zou, Jianping Chang, Song Liang
  • Patent number: 10535509
    Abstract: The present disclosure provides an ion migration tube and a method of operation the same. The ion migration tube includes an interior space and an ion gate disposed within the interior space, the interior space includes an ionization region having an absolute value of potential V1 and a migration region. An ion gate is disposed between the ionization region and the migration region and includes a first ion gate grid having an absolute value of potential V2 and a second ion gate grid having an absolute value of potential V3, the migration region comprises at least a first migration region electrode having an absolute value of potential V4 and a second migration region electrode having an absolute value of potential V5. When the ion gate is opened, a potential well is formed for ionized ions between the first ion gate grid and the first migration region electrode so as to compress an ion group entering the migration region.
    Type: Grant
    Filed: December 29, 2017
    Date of Patent: January 14, 2020
    Assignees: Nuctech Company Limited, Tsinghua University
    Inventors: Qingjun Zhang, Yuanjing Li, Ziran Zhao, Weiping Zhu, Huishao He, Xianghua Li, Qiufeng Ma
  • Patent number: 10510683
    Abstract: The present disclosure proposes a packaging structure for a metallic bonding based opto-electronic device and a manufacturing method thereof. According to the embodiments, the packaging structure for an opto-electronic device may comprise an opto-electronic chip and a packaging base. The opto-electronic chip comprises: a substrate having a first substrate surface and a second substrate surface opposite to each other; an opto-electronic device formed on the substrate; and electrodes for the opto-electronic device which are formed on the first substrate surface. The packaging base has a first base surface and a second base surface opposite to each other, and comprises conductive channels extending from the first base surface to the second base surface.
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: December 17, 2019
    Assignees: Tsinghua University, NUCTECH COMPANY LIMITED
    Inventors: Wenjian Zhang, Qingjun Zhang, Yuanjing Li, Zhiqiang Chen, Ziran Zhao, Yinong Liu, Yaohong Liu, Xiang Zou, Huishao He, Shuwei Li, Nan Bai
  • Publication number: 20190346380
    Abstract: The present disclosure discloses an afterglow detection device and an afterglow detection method. The afterglow detection device comprises: an X-ray tube for emitting an X-ray beam; a first reading circuit for receiving a first detected signal from a to-be-detected detector to form and output a first measurement signal according to the first detected signal, the to-be-detected detector being connected to the first reading circuit and disposed on a beam-out side of the X-ray tube to receive radiation of the X-ray beam and outputting the first detected signal to the first reading circuit at the time of detection; a residual ray detector disposed on a beam-out side of the X-ray tube; a second reading circuit connected to the residual ray detector for receiving a second detected signal from the residual ray detector to form and output a second measurement signal according to the second detected signal.
    Type: Application
    Filed: May 5, 2019
    Publication date: November 14, 2019
    Inventors: Shuwei LI, Wenjian ZHANG, Xiang ZOU, Bozhen ZHAO, Qingjun ZHANG, Huishao HE, Yongqiang WANG, Yanchun WANG
  • Patent number: 10466372
    Abstract: The present invention discloses an X-ray beam intensity monitoring device and an X-ray inspection system. The X-ray beam intensity monitoring device comprises an intensity detecting module and a data processing module, wherein the intensity detecting module is adopted to be irradiated by the X-ray beam and send a detecting signal, the data processing module is coupled with the intensity detecting module to receive the detecting signal and output an X-ray beam intensity monitoring signal, wherein the X-ray beam intensity monitoring signal includes a dose monitoring signal for the X-ray beam and a brightness correction signal for correcting signal values of the X-ray beam. The X-ray beam intensity monitoring device can simultaneously perform dose monitoring and brightness monitoring, thereby improving the service efficiency of the X-ray beam intensity monitoring device. Moreover, the monitoring result of the X-ray beam intensity can be more accurate and reliable.
    Type: Grant
    Filed: December 29, 2015
    Date of Patent: November 5, 2019
    Assignees: TSINGHUA UNIVERSITY, NUCTECH COMPANY LIMITED
    Inventors: Kejun Kang, Shuwei Li, Qingjun Zhang, Yuanjing Li, Yulan Li, Ziran Zhao, Yinong Liu, Yaohong Liu, Weibin Zhu, Xiaolin Zhao, Huishao He
  • Patent number: 10429348
    Abstract: A detection apparatus and a detection method are disclosed. In one aspect, the detection apparatus includes a sampling device for collecting samples to be checked. It further includes a sample pre-processing device configured to pre-process the sample from the sampling device. It further includes a sample analyzing device for separating samples from the pre-processing device and for analyzing the separated samples. The detection apparatus is miniaturized and highly precise, and is capable of quickly and accurately detecting gaseous phase or particulate substances, and it has applications for safety inspections at airports, ports, and subway stations.
    Type: Grant
    Filed: April 5, 2019
    Date of Patent: October 1, 2019
    Assignee: Nuctech Company Limited
    Inventors: Qingjun Zhang, Yuanjing Li, Zhiqiang Chen, Ziran Zhao, Yinong Liu, Yaohong Liu, Huishao He, Qiufeng Ma, Weiping Zhu, Xiang Zou, Jianping Chang, Song Liang
  • Patent number: 10408804
    Abstract: A darkroom type security inspection apparatus and a method of performing an inspection using the darkroom type security inspection apparatus. An apparatus includes a housing constituting a closed darkroom, and assemblies disposed inside the housing. The assemblies disposed inside the housing include: a sample collecting unit configured to collect a sample, a conveyor unit, and a X-ray detection unit to detect a position of the objected to be inspected, wherein the X-ray detection unit is configured to determine the position of the objected to be inspected within the sampling assembly so that the object to be inspected together with the conveyor unit is conveyed to an expected position; and a sample processing assembly, wherein the assemblies disposed inside the housing are communicated by fittings or connectors.
    Type: Grant
    Filed: September 26, 2016
    Date of Patent: September 10, 2019
    Assignees: TSINGHUA UNIVERSITY, NUCTECH COMPANY LIMITED
    Inventors: Qingjun Zhang, Yuanjing Li, Zhiqiang Chen, Ziran Zhao, Weiping Zhu, Yaohong Liu, Qiufeng Ma, Xiang Zou, Huishao He, Jianping Chang, Song Liang
  • Publication number: 20190234904
    Abstract: A detection apparatus and a detection method are disclosed. In one aspect, the detection apparatus includes a sampling device for collecting samples to be checked. It further includes a sample pre-processing device configured to pre-process the sample from the sampling device. It further includes a sample analyzing device for separating samples from the pre-processing device and for analyzing the separated samples. The detection apparatus is miniaturized and highly precise, and is capable of quickly and accurately detecting gaseous phase or particulate substances, and it has applications for safety inspections at airports, ports, and subway stations.
    Type: Application
    Filed: April 5, 2019
    Publication date: August 1, 2019
    Inventors: Qingjun Zhang, Yuanjing Li, Zhiqiang Chen, Ziran Zhao, Yinong Liu, Yaohong Liu, Huishao He, Qiufeng Ma, Weiping Zhu, Xiang Zou, Jianping Chang, Song Liang
  • Publication number: 20190234905
    Abstract: A detection apparatus and a detection method are disclosed. In one aspect, the detection apparatus includes a sampling device for collecting samples to be checked. It further includes a sample pre-processing device configured to pre-process the sample from the sampling device. It further includes a sample analyzing device for separating samples from the pre-processing device and for analyzing the separated samples. The detection apparatus is miniaturized and highly precise, and is capable of quickly and accurately detecting gaseous phase or particulate substances, and it has applications for safety inspections at airports, ports, and subway stations.
    Type: Application
    Filed: April 5, 2019
    Publication date: August 1, 2019
    Inventors: Qingjun Zhang, Yuanjing Li, Zhiqiang Chen, Ziran Zhao, Yinong Liu, Yaohong Liu, Huishao He, Qiufeng Ma, Weiping Zhu, Xiang Zou, Jianping Chang, Song Liang
  • Patent number: 10281431
    Abstract: The present invention discloses darkroom type security inspection apparatus and method. An apparatus comprises a housing constituting a closed darkroom, and assemblies disposed inside the housing. The assemblies disposed inside the housing are communicated by fittings or connectors and comprises: a sampling assembly comprising a sample collecting unit and a conveyer unit configured to convey an object to be inspected into the sample collecting unit; a sample processing assembly configured to concentrate and analyze the sample; and, an inspecting assembly configured to inspect composition of the sample by means of a gas chromatographic-ion mobility spectrometer (GC-IMS) or a separated ion mobility spectrometer (IMS).
    Type: Grant
    Filed: September 21, 2016
    Date of Patent: May 7, 2019
    Assignee: Nuctech Company Limited
    Inventors: Qingjun Zhang, Yuanjing Li, Zhiqiang Chen, Weiping Zhu, Ziran Zhao, Qiufeng Ma, Huishao He, Jianping Chang, Xiang Zou, Linxia Tan
  • Patent number: 10281432
    Abstract: A detection apparatus and a detection method are disclosed. In one aspect, the detection apparatus includes a sampling device for collecting samples to be checked. It further includes a sample pre-processing device configured to pre-process the sample from the sampling device. It further includes a sample analyzing device for separating samples from the pre-processing device and for analyzing the separated samples. The detection apparatus is miniaturized and highly precise, and is capable of quickly and accurately detecting gaseous phase or particulate substances, and it has applications for safety inspections at airports, ports, and subway stations.
    Type: Grant
    Filed: September 29, 2016
    Date of Patent: May 7, 2019
    Assignee: Nuctech Company Limited
    Inventors: Qingjun Zhang, Yuanjing Li, Zhiqiang Chen, Ziran Zhao, Yinong Liu, Yaohong Liu, Huishao He, Qiufeng Ma, Weiping Zhu, Xiang Zou, Jianping Chang, Song Liang
  • Patent number: 10234436
    Abstract: The present disclosure provides a gas chromatography-ion mobility spectrometry apparatus, including a housing, an injection port mounted to and connected with the housing and configured for input of a gas containing a sample therein, a multicapillary column configured for separation of a gas substance and an ion mobility tub configured for analysis of the gas substance. The gas chromatography-ion mobility spectrometry apparatus further includes: a gas path part connected with the ion mobility tube and configured for providing the gas to the ion mobility tube and receiving a gas discharged from the ion mobility tube; and a buffer base part detachably mounted to the housing and configured to isolation vibration outside the buffer base part, the ion mobility tube being disposed on the buffer base part, wherein the gas path part is mounted in an interior space of the buffer base part.
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: March 19, 2019
    Assignee: Nuctech Company Limited
    Inventors: Qingjun Zhang, Yuanjing Li, Ziran Zhao, Weiping Zhu, Huishao He, Qiufeng Ma, Xiang Zou, Biao Cao
  • Patent number: 10215666
    Abstract: A sample injection device for sample collection and thermal desorption includes: a sample collection structure; a piston type adsorber having an adsorption cavity communicating with the sample collection structure; a piston cylinder defining a piston chamber accommodating the adsorber and communicating with the adsorption cavity; a thermal desorption chamber communicating with the adsorption cavity and the piston chamber; and a pump configured to pump a sample diffused in an ambient gas into the adsorption cavity through the sample collection structure and the piston chamber; the adsorber is movable between a sample collecting position where the adsorption cavity is outside the thermal desorption chamber and adsorbs the sample collected by the sample collection structure and a sample desorbing position where the adsorption cavity is inside the thermal desorption chamber so that the adsorbed sample is thermally desorbed in the thermal desorption chamber.
    Type: Grant
    Filed: December 28, 2015
    Date of Patent: February 26, 2019
    Assignee: Nuctech Company Limited
    Inventors: Qingjun Zhang, Yuanjing Li, Zhiqiang Chen, Weiping Zhu, Huishao He, Qiufeng Ma, Yaohong Liu, Xiang Zou, Jianping Chang
  • Patent number: 10151671
    Abstract: A sampling device and a gas curtain guide are disclosed. In one aspect, the sampling device includes a chamber body. The chamber body includes a sample inlet, located at a first end of the chamber body, configured for suction of a sample. The chamber body further includes a sample outlet, located adjacent to a second end opposite to the first end of the chamber body, configured to discharge the sample. The chamber body further includes a gas inflation inlet, in a wall of the chamber body, configured to introduce a swirl gas flow into the chamber body. The chamber body further includes a gas exhaust opening configured to discharge gas so as to, together with the gas inflation inlet, generate a tornado type gas flow in the chamber body, which moves spirally from the first end to the second end of the chamber body.
    Type: Grant
    Filed: August 16, 2016
    Date of Patent: December 11, 2018
    Assignee: Nuctech Company Limited
    Inventors: Qingjun Zhang, Yuanjing Li, Zhiqiang Chen, Huishao He, Qiufeng Ma, Ziran Zhao, Yinong Liu, Yaohong Liu, Weiping Zhu, Xiang Zou, Jianping Chang
  • Patent number: 10032616
    Abstract: A sample introduction device comprises a sampling unit, a gas suction pump, adsorption units, a piston cylinder and a desorption cylinder that comprises a desorption chamber, a carrier-gas inlet, a split/purge vent and an analyzer nozzle communicating with the desorption chamber. A heating film and a temperature sensor are provided on outer wall of the desorption cylinder. The piston cylinder above the desorption cylinder comprises two piston chambers, each of which is provided with the adsorption unit and in communication with the desorption chamber. The piston cylinder comprises a sample-gas inlet connected to the sampling unit and a gas-suction-pump orifice connected to the gas suction pump, each of which can communicate with both piston chambers. Each adsorption unit comprises an adsorption cylinder-like screen for holding adsorbents and a piston rod slidably mounted in the piston chamber.
    Type: Grant
    Filed: December 30, 2015
    Date of Patent: July 24, 2018
    Assignee: Nuctech Company Limited
    Inventors: Qingjun Zhang, Yuanjing Li, Zhiqiang Chen, Weiping Zhu, Huishao He, Qiufeng Ma, Yaohong Liu, Xiang Zou, Jianping Chang
  • Publication number: 20180190482
    Abstract: The present disclosure provides an ion migration tube and a method of operation the same. The ion migration tube includes an interior space and an ion gate disposed within the interior space, the interior space includes an ionization region having an absolute value of potential V1 and a migration region. An ion gate is disposed between the ionization region and the migration region and includes a first ion gate grid having an absolute value of potential V2 and a second ion gate grid having an absolute value of potential V3, the migration region comprises at least a first migration region electrode having an absolute value of potential V4 and a second migration region electrode having an absolute value of potential V5. When the ion gate is opened, a potential well is formed for ionized ions between the first ion gate grid and the first migration region electrode so as to compress an ion group entering the migration region.
    Type: Application
    Filed: December 29, 2017
    Publication date: July 5, 2018
    Inventors: Qingjun Zhang, Yuanjing Li, Ziran Zhao, Weiping Zhu, Huishao He, Xianghua Li, Qiufeng Ma
  • Publication number: 20180164262
    Abstract: The present disclosure provides a gas chromatography-ion mobility spectrometry apparatus, including a housing, an injection port mounted to and connected with the housing and configured for input of a gas containing a sample therein, a multicapillary column configured for separation of a gas substance and an ion mobility tub configured for analysis of the gas substance. The gas chromatography-ion mobility spectrometry apparatus further includes: a gas path part connected with the ion mobility tube and configured for providing the gas to the ion mobility tube and receiving a gas discharged from the ion mobility tube; and a buffer base part detachably mounted to the housing and configured to isolation vibration outside the buffer base part, the ion mobility tube being disposed on the buffer base part, wherein the gas path part is mounted in an interior space of the buffer base part.
    Type: Application
    Filed: November 30, 2017
    Publication date: June 14, 2018
    Inventors: Qingjun ZHANG, Yuanjing LI, Ziran ZHAO, Weiping ZHU, Huishao HE, Qiufeng MA, Xiang ZOU, Biao CAO
  • Publication number: 20180158785
    Abstract: The present disclosure proposes a packaging structure for a metallic bonding based opto-electronic device and a manufacturing method thereof. According to the embodiments, the packaging structure for an opto-electronic device may comprise an opto-electronic chip and a packaging base. The opto-electronic chip comprises: a substrate having a first substrate surface and a second substrate surface opposite to each other; an opto-electronic device formed on the substrate; and electrodes for the opto-electronic device which are formed on the first substrate surface. The packaging base has a first base surface and a second base surface opposite to each other, and comprises conductive channels extending from the first base surface to the second base surface.
    Type: Application
    Filed: September 28, 2017
    Publication date: June 7, 2018
    Inventors: Wenjian ZHANG, Qingjun ZHANG, Yuanjing LI, Zhiqiang CHEN, Ziran ZHAO, Yinong LIU, Yaohong LIU, Xiang ZOU, Huishao HE, Weishu LI, Nan BAI
  • Patent number: 9983321
    Abstract: The invention discloses a safety inspection detector and a goods safety inspection system. The safety inspection detector at least comprises a circuit board, a first housing, a second housing, a detection module and a connecting interface. The detection module and the connecting interface are mounted on the circuit board. The first housing is pressed and connected to a first surface of the circuit board, and the second housing is pressed and connected to a second surface of the circuit board. The first housing and the second housing can hermetically wrap the detection module and electronic devices on the circuit board, but bypass the connecting interface to realize leading-out and connection with related interconnected cables by utilizing the connecting interface. The housings can be used for sealing and protecting sensitive electronic devices in the detector, thus being moisture proof and preventing interference.
    Type: Grant
    Filed: September 7, 2016
    Date of Patent: May 29, 2018
    Assignees: NUCTECH COMPANY LIMITED, TSINGHUA UNIVERSITY
    Inventors: Qingjun Zhang, Yuanjing Li, Zhiqiang Chen, Ziran Zhao, Yinong Liu, Yaohong Liu, Xiang Zou, Huishao He, Shuwei Li, Jianping Chang, Wenjian Zhang