Patents by Inventor Huseyin SUMBUL

Huseyin SUMBUL has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11751404
    Abstract: Embodiments herein describe techniques for a semiconductor device including a RRAM memory cell. The RRAM memory cell includes a FinFET transistor and a RRAM storage cell. The FinFET transistor includes a fin structure on a substrate, where the fin structure includes a channel region, a source region, and a drain region. An epitaxial layer is around the source region or the drain region. A RRAM storage stack is wrapped around a surface of the epitaxial layer. The RRAM storage stack includes a resistive switching material layer in contact and wrapped around the surface of the epitaxial layer, and a contact electrode in contact and wrapped around a surface of the resistive switching material layer. The epitaxial layer, the resistive switching material layer, and the contact electrode form a RRAM storage cell. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: September 25, 2018
    Date of Patent: September 5, 2023
    Assignee: Intel Corporation
    Inventors: Abhishek Sharma, Gregory Chen, Phil Knag, Ram Krishnamurthy, Raghavan Kumar, Sasikanth Manipatruni, Amrita Mathuriya, Huseyin Sumbul, Ian A. Young
  • Patent number: 11522012
    Abstract: A DIMA semiconductor structure is disclosed. The DIMA semiconductor structure includes a frontend including a semiconductor substrate, a transistor switch of a memory cell coupled to the semiconductor substrate and a computation circuit on the periphery of the frontend coupled to the semiconductor substrate. Additionally, the DIMA includes a backend that includes an RRAM component of the memory cell that is coupled to the transistor switch.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: December 6, 2022
    Assignee: Intel Corporation
    Inventors: Jack T. Kavalieros, Ian A. Young, Ram Krishnamurthy, Ravi Pillarisetty, Sasikanth Manipatruni, Gregory Chen, Hui Jae Yoo, Van H. Le, Abhishek Sharma, Raghavan Kumar, Huichu Liu, Phil Knag, Huseyin Sumbul
  • Patent number: 11502696
    Abstract: Embodiments are directed to systems and methods of implementing an analog neural network using a pipelined SRAM architecture (“PISA”) circuitry disposed in on-chip processor memory circuitry. The on-chip processor memory circuitry may include processor last level cache (LLC) circuitry. One or more physical parameters, such as a stored charge or voltage, may be used to permit the generation of an in-memory analog output using a SRAM array. The generation of an in-memory analog output using only word-line and bit-line capabilities beneficially increases the computational density of the PISA circuit without increasing power requirements.
    Type: Grant
    Filed: October 15, 2018
    Date of Patent: November 15, 2022
    Assignee: Intel Corporation
    Inventors: Amrita Mathuriya, Sasikanth Manipatruni, Victor Lee, Huseyin Sumbul, Gregory Chen, Raghavan Kumar, Phil Knag, Ram Krishnamurthy, Ian Young, Abhishek Sharma
  • Patent number: 11416165
    Abstract: The present disclosure is directed to systems and methods of implementing a neural network using in-memory, bit-serial, mathematical operations performed by a pipelined SRAM architecture (bit-serial PISA) circuitry disposed in on-chip processor memory circuitry. The on-chip processor memory circuitry may include processor last level cache (LLC) circuitry. The bit-serial PISA circuitry is coupled to PISA memory circuitry via a relatively high-bandwidth connection to beneficially facilitate the storage and retrieval of layer weights by the bit-serial PISA circuitry during execution. Direct memory access (DMA) circuitry transfers the neural network model and input data from system memory to the bit-serial PISA memory and also transfers output data from the PISA memory circuitry to system memory circuitry.
    Type: Grant
    Filed: October 15, 2018
    Date of Patent: August 16, 2022
    Assignee: Intel Corporation
    Inventors: Amrita Mathuriya, Sasikanth Manipatruni, Victor Lee, Huseyin Sumbul, Gregory Chen, Raghavan Kumar, Phil Knag, Ram Krishnamurthy, Ian Young, Abhishek Sharma
  • Patent number: 11347994
    Abstract: The present disclosure is directed to systems and methods of bit-serial, in-memory, execution of at least an nth layer of a multi-layer neural network in a first on-chip processor memory circuitry portion contemporaneous with prefetching and storing layer weights associated with the (n+1)st layer of the multi-layer neural network in a second on-chip processor memory circuitry portion. The storage of layer weights in on-chip processor memory circuitry beneficially decreases the time required to transfer the layer weights upon execution of the (n+1)st layer of the multi-layer neural network by the first on-chip processor memory circuitry portion. In addition, the on-chip processor memory circuitry may include a third on-chip processor memory circuitry portion used to store intermediate and/or final input/output values associated with one or more layers included in the multi-layer neural network.
    Type: Grant
    Filed: October 15, 2018
    Date of Patent: May 31, 2022
    Assignee: Intel Corporation
    Inventors: Amrita Mathuriya, Sasikanth Manipatruni, Victor Lee, Huseyin Sumbul, Gregory Chen, Raghavan Kumar, Phil Knag, Ram Krishnamurthy, Ian Young, Abhishek Sharma
  • Patent number: 11151046
    Abstract: The present disclosure is directed to systems and methods of implementing a neural network using in-memory mathematical operations performed by pipelined SRAM architecture (PISA) circuitry disposed in on-chip processor memory circuitry. A high-level compiler may be provided to compile data representative of a multi-layer neural network model and one or more neural network data inputs from a first high-level programming language to an intermediate domain-specific language (DSL). A low-level compiler may be provided to compile the representative data from the intermediate DSL to multiple instruction sets in accordance with an instruction set architecture (ISA), such that each of the multiple instruction sets corresponds to a single respective layer of the multi-layer neural network model. Each of the multiple instruction sets may be assigned to a respective SRAM array of the PISA circuitry for in-memory execution.
    Type: Grant
    Filed: July 6, 2020
    Date of Patent: October 19, 2021
    Assignee: Intel Corporation
    Inventors: Amrita Mathuriya, Sasikanth Manipatruni, Victor Lee, Huseyin Sumbul, Gregory Chen, Raghavan Kumar, Phil Knag, Ram Krishnamurthy, Ian Young, Abhishek Sharma
  • Patent number: 11016701
    Abstract: Techniques and mechanisms for a memory device to perform in-memory computing based on a logic state which is detected with a voltage-controlled oscillator (VCO). In an embodiment, a VCO circuit of the memory device receives from a memory array a first signal indicating a logic state that is based on one or more currently stored data bits. The VCO provides a conversion from the logic state being indicated by a voltage characteristic of the first signal to the logic state being indicated by a corresponding frequency characteristic of a cyclical signal. Based on the frequency characteristic, the logic state is identified and communicated for use in an in-memory computation at the memory device. In another embodiment, a result of the in-memory computation is written back to the memory array.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: May 25, 2021
    Assignee: Intel Corporation
    Inventors: Ian Young, Ram Krishnamurthy, Sasikanth Manipatruni, Amrita Mathuriya, Abhishek Sharma, Raghavan Kumar, Phil Knag, Huseyin Sumbul, Gregory Chen
  • Publication number: 20200334161
    Abstract: The present disclosure is directed to systems and methods of implementing a neural network using in-memory mathematical operations performed by pipelined SRAM architecture (PISA) circuitry disposed in on-chip processor memory circuitry. A high-level compiler may be provided to compile data representative of a multi-layer neural network model and one or more neural network data inputs from a first high-level programming language to an intermediate domain-specific language (DSL). A low-level compiler may be provided to compile the representative data from the intermediate DSL to multiple instruction sets in accordance with an instruction set architecture (ISA), such that each of the multiple instruction sets corresponds to a single respective layer of the multi-layer neural network model. Each of the multiple instruction sets may be assigned to a respective SRAM array of the PISA circuitry for in-memory execution.
    Type: Application
    Filed: July 6, 2020
    Publication date: October 22, 2020
    Applicant: Intel Corporation
    Inventors: Amrita Mathuriya, Sasikanth Manipatruni, Victor Lee, Huseyin Sumbul, Gregory Chen, Raghavan Kumar, Phil Knag, Ram Krishnamurthy, IAN YOUNG, Abhishek Sharma
  • Patent number: 10705967
    Abstract: The present disclosure is directed to systems and methods of implementing a neural network using in-memory mathematical operations performed by pipelined SRAM architecture (PISA) circuitry disposed in on-chip processor memory circuitry. A high-level compiler may be provided to compile data representative of a multi-layer neural network model and one or more neural network data inputs from a first high-level programming language to an intermediate domain-specific language (DSL). A low-level compiler may be provided to compile the representative data from the intermediate DSL to multiple instruction sets in accordance with an instruction set architecture (ISA), such that each of the multiple instruction sets corresponds to a single respective layer of the multi-layer neural network model. Each of the multiple instruction sets may be assigned to a respective SRAM array of the PISA circuitry for in-memory execution.
    Type: Grant
    Filed: October 15, 2018
    Date of Patent: July 7, 2020
    Assignee: Intel Corporation
    Inventors: Amrita Mathuriya, Sasikanth Manipatruni, Victor Lee, Huseyin Sumbul, Gregory Chen, Raghavan Kumar, Phil Knag, Ram Krishnamurthy, Ian Young, Abhishek Sharma
  • Publication number: 20200105833
    Abstract: A DIMA semiconductor structure is disclosed. The DIMA semiconductor structure includes a frontend including a semiconductor substrate, a transistor switch of a memory cell coupled to the semiconductor substrate and a computation circuit on the periphery of the frontend coupled to the semiconductor substrate. Additionally, the DIMA includes a backend that includes an RRAM component of the memory cell that is coupled to the transistor switch.
    Type: Application
    Filed: September 28, 2018
    Publication date: April 2, 2020
    Inventors: Jack T. KAVALIEROS, Ian A. YOUNG, Ram KRISHNAMURTHY, Ravi PILLARISETTY, Sasikanth MANIPATRUNI, Gregory CHEN, Hui Jae YOO, Van H. LE, Abhishek SHARMA, Raghavan KUMAR, Huichu LIU, Phil KNAG, Huseyin SUMBUL
  • Publication number: 20200098826
    Abstract: Embodiments herein describe techniques for a semiconductor device including a RRAM memory cell. The RRAM memory cell includes a FinFET transistor and a RRAM storage cell. The FinFET transistor includes a fin structure on a substrate, where the fin structure includes a channel region, a source region, and a drain region. An epitaxial layer is around the source region or the drain region. A RRAM storage stack is wrapped around a surface of the epitaxial layer. The RRAM storage stack includes a resistive switching material layer in contact and wrapped around the surface of the epitaxial layer, and a contact electrode in contact and wrapped around a surface of the resistive switching material layer. The epitaxial layer, the resistive switching material layer, and the contact electrode form a RRAM storage cell. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: September 25, 2018
    Publication date: March 26, 2020
    Inventors: Abhishek SHARMA, Gregory CHEN, Phil KNAG, Ram KRISHNAMURTHY, Raghavan KUMAR, Sasikanth MANIPATRUNI, Amrita MATHURIYA, Huseyin SUMBUL, Ian A. YOUNG
  • Publication number: 20200098824
    Abstract: Embodiments herein describe techniques for a semiconductor device including a RRAM memory cell. The RRAM memory cell includes a substrate, a RRAM storage cell above the substrate, and a diode adjacent to the RRAM storage cell. The RRAM storage cell includes a first electrode located in a first metal layer above the substrate, a resistive switching material layer adjacent to the first electrode, and a second electrode adjacent to the resistive switching material layer. The second electrode is shared between the RRAM storage cell and the diode. The diode includes the second electrode shared with the RRAM storage cell, a semiconductor layer adjacent to the second electrode, and a third electrode located in a second metal layer above the substrate. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: September 26, 2018
    Publication date: March 26, 2020
    Inventors: Abhishek SHARMA, Gregory K. CHEN, Ram KRISHNAMURTHY, Ravi PILLARISETTY, Sasikanth MANIPATRUNI, Amrita MATHURIYA, Raghavan KUMAR, Phil KNAG, Huseyin SUMBUL, Urusa ALAAN, Noriyuki SATO
  • Patent number: 10565138
    Abstract: Techniques and mechanisms for providing data to be used in an in-memory computation at a memory device. In an embodiment a memory device comprises a first memory array and circuitry, coupled to the first memory array, to perform a data computation based on data stored at the first memory array. Prior to the computation, the first memory array receives the data from a second memory array of the memory device. The second memory array extends horizontally in parallel with, but is offset vertically from, the first memory array. In another embodiment, a single integrated circuit die includes both the first memory array and the second memory array.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: February 18, 2020
    Assignee: Intel Corporation
    Inventors: Jack Kavalieros, Ram Krishnamurthy, Sasikanth Manipatruni, Gregory Chen, Van Le, Amrita Mathuriya, Abhishek Sharma, Raghavan Kumar, Phil Knag, Huseyin Sumbul, Ian Young
  • Publication number: 20190205273
    Abstract: Techniques and mechanisms for providing data to be used in an in-memory computation at a memory device. In an embodiment a memory device comprises a first memory array and circuitry, coupled to the first memory array, to perform a data computation based on data stored at the first memory array. Prior to the computation, the first memory array receives the data from a second memory array of the memory device. The second memory array extends horizontally in parallel with, but is offset vertically from, the first memory array. In another embodiment, a single integrated circuit die includes both the first memory array and the second memory array.
    Type: Application
    Filed: September 28, 2018
    Publication date: July 4, 2019
    Inventors: Jack KAVALIEROS, Ram KRISHNAMURTHY, Sasikanth MANIPATRUNI, Gregory CHEN, Van LE, Amrita MATHURIYA, Abhishek SHARMA, Raghavan KUMAR, Phil KNAG, Huseyin SUMBUL
  • Publication number: 20190080731
    Abstract: Techniques and mechanisms for providing data to be used in an in-memory computation at a memory device. In an embodiment a memory device comprises a first memory array and circuitry, coupled to the first memory array, to perform a data computation based on data stored at the first memory array. Prior to the computation, the first memory array receives the data from a second memory array of the memory device. The second memory array extends horizontally in parallel with, but is offset vertically from, the first memory array. In another embodiment, a single integrated circuit die includes both the first memory array and the second memory array.
    Type: Application
    Filed: September 6, 2018
    Publication date: March 14, 2019
    Inventors: Jack KAVALIEROS, Ram KRISHNAMURTHY, Sasikanth MANIPATRUNI, Gregory CHEN, Van LE, Amrita MATHURIYA, Abhishek SHARMA, Raghavan KUMAR, Phil KNAG, Huseyin SUMBUL
  • Publication number: 20190057304
    Abstract: The present disclosure is directed to systems and methods of implementing an analog neural network using a pipelined SRAM architecture (“PISA”) circuitry disposed in on-chip processor memory circuitry. The on-chip processor memory circuitry may include processor last level cache (LLC) circuitry. One or more physical parameters, such as a stored charge or voltage, may be used to permit the generation of an in-memory analog output using a SRAM array. The generation of an in-memory analog output using only word-line and bit-line capabilities beneficially increases the computational density of the PISA circuit without increasing power requirements.
    Type: Application
    Filed: October 15, 2018
    Publication date: February 21, 2019
    Inventors: Amrita Mathuriya, Sasikanth Manipatruni, Victor Lee, Huseyin Sumbul, Gregory Chen, Raghavan Kumar, Phil Knag, Ram Krishnamurthy, IAN YOUNG, Abhishek Sharma
  • Publication number: 20190057036
    Abstract: The present disclosure is directed to systems and methods of implementing a neural network using in-memory mathematical operations performed by pipelined SRAM architecture (PISA) circuitry disposed in on-chip processor memory circuitry. A high-level compiler may be provided to compile data representative of a multi-layer neural network model and one or more neural network data inputs from a first high-level programming language to an intermediate domain-specific language (DSL). A low-level compiler may be provided to compile the representative data from the intermediate DSL to multiple instruction sets in accordance with an instruction set architecture (ISA), such that each of the multiple instruction sets corresponds to a single respective layer of the multi-layer neural network model. Each of the multiple instruction sets may be assigned to a respective SRAM array of the PISA circuitry for in-memory execution.
    Type: Application
    Filed: October 15, 2018
    Publication date: February 21, 2019
    Inventors: Amrita Mathuriya, Sasikanth Manipatruni, Victor Lee, Huseyin Sumbul, Gregory Chen, Raghavan Kumar, Phil Knag, Ram Krishnamurthy, IAN YOUNG, Abhishek Sharma
  • Publication number: 20190057300
    Abstract: The present disclosure is directed to systems and methods of bit-serial, in-memory, execution of at least an nth layer of a multi-layer neural network in a first on-chip processor memory circuitry portion contemporaneous with prefetching and storing layer weights associated with the (n+1)st layer of the multi-layer neural network in a second on-chip processor memory circuitry portion. The storage of layer weights in on-chip processor memory circuitry beneficially decreases the time required to transfer the layer weights upon execution of the (n+1)st layer of the multi-layer neural network by the first on-chip processor memory circuitry portion. In addition, the on-chip processor memory circuitry may include a third on-chip processor memory circuitry portion used to store intermediate and/or final input/output values associated with one or more layers included in the multi-layer neural network.
    Type: Application
    Filed: October 15, 2018
    Publication date: February 21, 2019
    Inventors: Amrita Mathuriya, Sasikanth Manipatruni, Victor Lee, Huseyin Sumbul, Gregory Chen, Raghavan Kumar, Phil Knag, Ram Krishnamurthy, IAN YOUNG, Abhishek Sharma
  • Publication number: 20190056885
    Abstract: The present disclosure is directed to systems and methods of implementing a neural network using in-memory, bit-serial, mathematical operations performed by a pipelined SRAM architecture (bit-serial PISA) circuitry disposed in on-chip processor memory circuitry. The on-chip processor memory circuitry may include processor last level cache (LLC) circuitry. The bit-serial PISA circuitry is coupled to PISA memory circuitry via a relatively high-bandwidth connection to beneficially facilitate the storage and retrieval of layer weights by the bit-serial PISA circuitry during execution. Direct memory access (DMA) circuitry transfers the neural network model and input data from system memory to the bit-serial PISA memory and also transfers output data from the PISA memory circuitry to system memory circuitry.
    Type: Application
    Filed: October 15, 2018
    Publication date: February 21, 2019
    Inventors: Amrita Mathuriya, Sasikanth Manipatruni, Victor Lee, Huseyin Sumbul, Gregory Chen, Raghavan Kumar, Phil Knag, Ram Krishnamurthy, IAN YOUNG, Abhishek Sharma
  • Publication number: 20190042159
    Abstract: Techniques and mechanisms for a memory device to perform in-memory computing based on a logic state which is detected with a voltage-controlled oscillator (VCO). In an embodiment, a VCO circuit of the memory device receives from a memory array a first signal indicating a logic state that is based on one or more currently stored data bits. The VCO provides a conversion from the logic state being indicated by a voltage characteristic of the first signal to the logic state being indicated by a corresponding frequency characteristic of a cyclical signal. Based on the frequency characteristic, the logic state is identified and communicated for use in an in-memory computation at the memory device. In another embodiment, a result of the in-memory computation is written back to the memory array.
    Type: Application
    Filed: September 28, 2018
    Publication date: February 7, 2019
    Inventors: Ian YOUNG, Ram KRISHNAMURTHY, Sasikanth MANIPATRUNI, Amrita MATHURIYA, Abhishek SHARMA, Raghavan KUMAR, Phil KNAG, Huseyin SUMBUL, Gregory CHEN