Patents by Inventor Hyun Seong KUM

Hyun Seong KUM has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10338876
    Abstract: A multivision apparatus may include a display panel that includes a display screen including a first region and an adjacent second region. The first region may include first pixels, and the second region may include second pixels. The first pixels and the second pixels have different structures. The display panel may display a single image across the first region and the second region of the display screen. The multivision apparatus may include an array of interconnected display panels configured to collectively display an image, based on each given display panel displaying a separate sub-image in the first and second regions of the given display panel.
    Type: Grant
    Filed: October 25, 2016
    Date of Patent: July 2, 2019
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jun Youn Kim, Hyun Seong Kum, Young Hwan Park
  • Patent number: 9842960
    Abstract: According to an example embodiment, a method of manufacturing a nanostructure semiconductor light-emitting device includes forming nanocores of a first-conductivity type nitride semiconductor material on abase layer to be spaced apart from each other, and forming a multilayer shell including an active layer and a second-conductivity type nitride semiconductor layers on surfaces of each of the nanocores. At least a portion the multilayer shell is formed by controlling at least one process parameter of a flux of source gas, a flow rate of source gas, a chamber pressure, a growth temperature, and a growth rate so as to have a higher film thickness uniformity.
    Type: Grant
    Filed: September 28, 2015
    Date of Patent: December 12, 2017
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jae Hyeok Heo, Jin Sub Lee, Young Jin Choi, Hyun Seong Kum, Ji Hye Yeon, Dae Myung Chun, Jung Sub Kim, Han Kyu Seong
  • Publication number: 20170286044
    Abstract: A multivision apparatus may include a display panel that includes a display screen including a first region and an adjacent second region. The first region may include first pixels, and the second region may include second pixels. The first pixels and the second pixels have different structures. The display panel may display a single image across the first region and the second region of the display screen. The multivision apparatus may include an array of interconnected display panels configured to collectively display an image, based on each given display panel displaying a separate sub-image in the first and second regions of the given display panel.
    Type: Application
    Filed: October 25, 2016
    Publication date: October 5, 2017
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Jun Youn KIM, Hyun Seong KUM, Young Hwan PARK
  • Patent number: 9595637
    Abstract: There is provided a semiconductor light-emitting device including a base layer formed of a first conductivity-type semiconductor material, and a plurality of light-emitting nanostructures disposed on the base layer to be spaced apart from each other, and including first conductivity-type semiconductor cores, active layers, and second conductivity-type semiconductor layers. The first conductivity-type semiconductor cores include rod layers extending upwardly from the base layer, and capping layers disposed on the rod layers. Heights of the rod layers are different in at least a portion of the plurality of light-emitting nanostructures, and heights of the capping layers are different in at least a portion of the plurality of light-emitting nanostructures.
    Type: Grant
    Filed: October 22, 2015
    Date of Patent: March 14, 2017
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Hyun Seong Kum, Dae Myung Chun, Ji Hye Yeon, Han Kyu Seong, Jin Sub Lee, Young Jin Choi, Jae Hyeok Heo
  • Patent number: 9553235
    Abstract: A method for manufacturing a semiconductor light emitting device may include steps of forming a mask layer and a mold layer having a plurality of openings exposing portions of a base layer, forming a plurality of first conductivity-type semiconductor cores each including a body portion extending through each of the openings from the base layer and a tip portion disposed on the body portion and having a conical shape, and forming an active layer and a second conductivity-type semiconductor layer on each of the plurality of first conductivity-type semiconductor cores. The step of forming the plurality of first conductivity-type semiconductor cores may include forming a first region such that a vertex of the tip portion is positioned on a central vertical axis of the body portion, removing the mold layer, and forming an additional growth region on the first region such that the body portion has a hexagonal prism shape.
    Type: Grant
    Filed: February 20, 2015
    Date of Patent: January 24, 2017
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Dae Myung Chun, Ji Hye Yeon, Jae Hyeok Heo, Hyun Seong Kum, Han Kyu Seong, Young Jin Choi
  • Patent number: 9461205
    Abstract: A nanostructure semiconductor light emitting device includes a base layer, an insulating layer and a plurality of light emitting nanostructures. The base layer is formed of a first conductivity type semiconductor. The insulating layer is disposed on the base layer and has a plurality of openings through which regions of the base layer are exposed. Each of the light emitting nanostructures is disposed on the exposed regions of the base layer and includes nanocore formed of a first conductivity type semiconductor, and an active layer and a second conductivity-type semiconductor layer sequentially disposed on side surfaces of the nanocore. Upper surfaces of the light emitting nanostructures are non-planar and contain portions free of the second conductivity-type semiconductor layer in order to prevent light emissions during device driving.
    Type: Grant
    Filed: July 22, 2014
    Date of Patent: October 4, 2016
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Nam Goo Cha, Hyun Seong Kum, Ju Bin Seo, Dong Hoon Lee
  • Publication number: 20160126419
    Abstract: There is provided a semiconductor light-emitting device including a base layer formed of a first conductivity-type semiconductor material, and a plurality of light-emitting nanostructures disposed on the base layer to be spaced apart from each other, and including first conductivity-type semiconductor cores, active layers, and second conductivity-type semiconductor layers. The first conductivity-type semiconductor cores include rod layers extending upwardly from the base layer, and capping layers disposed on the rod layers. Heights of the rod layers are different in at least a portion of the plurality of light-emitting nanostructures, and heights of the capping layers are different in at least a portion of the plurality of light-emitting nanostructures.
    Type: Application
    Filed: October 22, 2015
    Publication date: May 5, 2016
    Inventors: Hyun Seong KUM, Dae Myung CHUN, Ji Hye YEON, Han Kyu SEONG, Jin Sub LEE, Young Jin CHOI, Jae Hyeok HEO
  • Publication number: 20160099376
    Abstract: According to an example embodiment, a method of manufacturing a nanostructure semiconductor light-emitting device includes forming nanocores of a first-conductivity type nitride semiconductor material on abase layer to be spaced apart from each other, and forming a multilayer shell including an active layer and a second-conductivity type nitride semiconductor layers on surfaces of each of the nanocores. At least a portion the multilayer shell is formed by controlling at least one process parameter of a flux of source gas, a flow rate of source gas, a chamber pressure, a growth temperature, and a growth rate so as to have a higher film thickness uniformity.
    Type: Application
    Filed: September 28, 2015
    Publication date: April 7, 2016
    Inventors: Jae Hyeok HEO, Jin Sub LEE, Young Jin CHOI, Hyun Seong KUM, Ji Hye YEON, Dae Myung CHUN, Jung Sub KIM, Han Kyu SEONG
  • Publication number: 20160013365
    Abstract: A method for manufacturing a semiconductor light emitting device may include steps of forming a mask layer and a mold layer having a plurality of openings exposing portions of a base layer, forming a plurality of first conductivity-type semiconductor cores each including a body portion extending through each of the openings from the base layer and a tip portion disposed on the body portion and having a conical shape, and forming an active layer and a second conductivity-type semiconductor layer on each of the plurality of first conductivity-type semiconductor cores. The step of forming the plurality of first conductivity-type semiconductor cores may include forming a first region such that a vertex of the tip portion is positioned on a central vertical axis of the body portion, removing the mold layer, and forming an additional growth region on the first region such that the body portion has a hexagonal prism shape.
    Type: Application
    Filed: February 20, 2015
    Publication date: January 14, 2016
    Inventors: Dae Myung CHUN, Ji Hye YEON, Jae Hyeok HEO, Hyun Seong KUM, Han Kyu SEONG, Young Jin CHOI
  • Publication number: 20150221825
    Abstract: A semiconductor light emitting device includes a substrate, a first conductivity-type semiconductor base layer disposed on the substrate, a plurality of light emitting nanostructures, a transparent electrode layer, and a first electrode. The plurality of light emitting nanostructures are disposed to be spaced apart from one another on the first conductivity-type semiconductor base layer and include a first conductivity-type semiconductor core, an active layer, and a second conductivity-type semiconductor layer, respectively. The transparent electrode layer is disposed on the second conductivity-type semiconductor layer and between the plurality of light emitting nanostructures. The first electrode is electrically connected to the second conductivity-type semiconductor layer by penetrating the substrate.
    Type: Application
    Filed: October 22, 2014
    Publication date: August 6, 2015
    Inventors: Geun-Woo KO, Nam Goo CHA, Hyun Seong KUM
  • Publication number: 20150102365
    Abstract: A nanostructure semiconductor light emitting device includes a base layer, an insulating layer and a plurality of light emitting nanostructures. The base layer is formed of a first conductivity type semiconductor. The insulating layer is disposed on the base layer and has a plurality of openings through which regions of the base layer are exposed. Each of the light emitting nanostructures is disposed on the exposed regions of the base layer and includes nanocore formed of a first conductivity type semiconductor, and an active layer and a second conductivity-type semiconductor layer sequentially disposed on side surfaces of the nanocore. Upper surfaces of the light emitting nanostructures are non-planar and contain portions free of the second conductivity-type semiconductor layer in order to prevent light emissions during device driving.
    Type: Application
    Filed: July 22, 2014
    Publication date: April 16, 2015
    Inventors: Nam Goo CHA, Hyun Seong KUM, Ju Bin SEO, Dong Hoon LEE