Patents by Inventor Ikuhiro Iwata

Ikuhiro Iwata has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220316767
    Abstract: A refrigerant cycle system includes a primary-side cycle that circulates a first refrigerant, a secondary-side cycle that circulates a second refrigerant, and a cascade heat exchanger that exchanges heat between the first refrigerant and the second refrigerant. The primary-side cycle includes a primary-side connection pipe. The secondary-side cycle includes a secondary-side connection pipe. The primary-side connection pipe includes a primary-side gas connection pipe and a primary-side liquid connection pipe. The secondary-side connection pipe includes a secondary-side gas connection pipe and a secondary-side liquid connection pipe. The pipe diameter of the secondary-side gas connection pipe is smaller than the pipe diameter of the primary-side gas connection pipe, or the pipe diameter of the secondary-side liquid connection pipe is smaller than the pipe diameter of the primary-side liquid connection pipe.
    Type: Application
    Filed: June 10, 2020
    Publication date: October 6, 2022
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Takuro Yamada, Eiji Kumakura, Atsushi Yoshimi, Ikuhiro Iwata, Tomoatsu Minamida
  • Publication number: 20220316765
    Abstract: A refrigerant cycle system includes: a primary-side cycle of a vapor compression type that circulates a first refrigerant; a secondary-side cycle of a vapor compression type that circulates a second refrigerant; and a cascade heat exchanger that exchanges heat between the first refrigerant and the second refrigerant. The secondary-side cycle includes a secondary-side heat exchanger that uses cold or heat obtained by the second refrigerant from the cascade heat exchanger. The secondary-side heat exchanger includes a flat multi-hole pipe.
    Type: Application
    Filed: June 10, 2020
    Publication date: October 6, 2022
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Takuro Yamada, Eiji Kumakura, Atsushi Yoshimi, Ikuhiro Iwata, Tomoatsu Minamida
  • Patent number: 11454433
    Abstract: An air-conditioning unit that is able to suppress ignition at an electric heater even when leakage of refrigerant occurs while a low-GWP refrigerant is used is provided. In an outdoor unit (20) including a casing (60), a compressor (21) provided inside the casing (60) and configured to compress refrigerant containing 1,2-difluoroethylene, and a drain pan heater (54) provided inside the casing (60), an electric power consumption of the drain pan heater (54) is lower than or equal to 300 W.
    Type: Grant
    Filed: June 25, 2020
    Date of Patent: September 27, 2022
    Assignee: DAIKIN INDUSTRIES, LTD.
    Inventors: Eiji Kumakura, Takuro Yamada, Atsushi Yoshimi, Ikuhiro Iwata, Mitsushi Itano, Daisuke Karube, Yuuki Yotsumoto, Kazuhiro Takahashi, Yuzo Komatsu, Shun Ohkubo, Tatsuya Takakuwa
  • Patent number: 11435118
    Abstract: A heat source unit and a refrigeration cycle apparatus that are able to reduce damage to a connection pipe when a refrigerant containing at least 1,2-difluoroethylene is used are provided. An outdoor unit (20) that is connected via a liquid-side connection pipe (6) and a gas-side connection pipe (5) to an indoor unit (30) including an indoor heat exchanger (31) and that is a component of an air conditioner (1) includes a compressor (21) and an outdoor heat exchanger (23). A refrigerant containing at least 1,2-difluoroethylene is used as a refrigerant. A design pressure of the outdoor unit (20) is lower than 1.5 times a design pressure of each of the liquid-side connection pipe (6) and the gas-side connection pipe (5).
    Type: Grant
    Filed: June 25, 2020
    Date of Patent: September 6, 2022
    Assignee: DAIKIN INDUSTRIES, LTD.
    Inventors: Eiji Kumakura, Takuro Yamada, Atsushi Yoshimi, Ikuhiro Iwata, Mitsushi Itano, Daisuke Karube, Yuuki Yotsumoto, Kazuhiro Takahashi, Tatsuya Takakuwa, Yuzo Komatsu, Shun Ohkubo
  • Publication number: 20220228782
    Abstract: Refrigerant is caused to be in a superheating state without impairing the performance of a cascade heat exchanger. A refrigerant cycle system includes a first refrigerant circuit, a second refrigerant circuit, and a first cascade heat exchanger. The first cascade heat exchanger exchanges heat between a first refrigerant that flows in the first refrigerant circuit and a second refrigerant that flows in the second refrigerant circuit. The refrigerant cycle system includes a switching mechanism. The switching mechanism switches a flow path of a refrigerant of at least either one of the first refrigerant circuit and the second refrigerant circuit. The first cascade heat exchanger includes a first main heat exchanging unit acid a first sub heat exchanging unit. The first sub heat exchanging unit is configured to cause the first refrigerant that has passed through the first main heat exchanging unit to be in a superheating state.
    Type: Application
    Filed: June 11, 2020
    Publication date: July 21, 2022
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Eiji KUMAKURA, Takuro YAMADA, Atsushi YOSHIMI, Ikuhiro IWATA, Tomoatsu MINAMIDA
  • Publication number: 20220221204
    Abstract: In a refrigeration cycle apparatus, a switching mechanism includes a first channel and performs switching among a first, second and third connection states. In the first connection state, the refrigeration cycle apparatus repeatedly performs a first cycle in which refrigerant flows through a compressor, a first heat exchanger, a second heat exchanger, and the compressor in that order. In the second connection state, the refrigeration cycle apparatus repeatedly performs a second cycle in which refrigerant flows through the compressor, the second heat exchanger, the first heat exchanger, and the compressor in that order. In the third connection state, a passage between the compressor and the first heat exchanger and a passage between the compressor and the second heat exchanger are closed, and the first channel in the refrigeration cycle apparatus provides interconnection between the first heat exchanger and the second heat exchanger.
    Type: Application
    Filed: March 29, 2022
    Publication date: July 14, 2022
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Takeru MIYAZAKI, Hiromune MATSUOKA, Atsushi YOSHIMI, Eiji KUMAKURA, Ikuhiro IWATA, Tomoatsu MINAMIDA, Takuro YAMADA
  • Publication number: 20220221202
    Abstract: At least one heat-source side cycle and at least one load side cycle share a cascade heat exchanger. A total number of cycles provided by the at least one heat-source side cycle and the at least one load side cycle is three or more, such that there is a first cycle, a second cycle and a third cycle. The first cycle circulates a first refrigerant or heat medium. The second cycle circulates a second refrigerant or heat medium. The third cycle circulates a third refrigerant or heat medium. The first refrigerant or heat medium, the second refrigerant or heat medium, and the third refrigerant or heat medium are different from one another.
    Type: Application
    Filed: March 29, 2022
    Publication date: July 14, 2022
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Takuro YAMADA, Atsushi YOSHIMI, Eiji KUMAKURA, Ikuhiro IWATA, Takeru MIYAZAKI
  • Publication number: 20220221168
    Abstract: An air conditioner includes an ejector that raises a pressure of refrigerant by using energy for refrigerant decompression and expansion. A switching mechanism switches between a refrigerant flow in a first operation and a refrigerant flow in a second operation. The air conditioner is configured such that in the first operation, refrigerant compressed by a compression mechanism radiates heat in a use-side heat exchanger and is decompressed and expanded by the ejector while refrigerant evaporated in a heat-source-side heat exchanger is raised in pressure by the ejector. The air conditioner is configured such that in the second operation, refrigerant compressed by the compression mechanism radiates heat in the heat-source-side heat exchanger and is decompressed and expanded by a first expansion valve before being evaporated in the use-side heat exchanger while refrigerant does not flow through the ejector.
    Type: Application
    Filed: March 29, 2022
    Publication date: July 14, 2022
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Atsushi YOSHIMI, Takuro YAMADA, Eiji KUMAKURA, Ikuhiro IWATA, Takeru MIYAZAKI
  • Publication number: 20220220353
    Abstract: An air conditioning apparatus is an air conditioning apparatus dedicated to cooling and includes a first circuit and a second circuit. The first circuit has an outdoor heat exchanger that cools a first refrigerant by outdoor air. In the second circuit, a first heat transfer medium that is cooled by exchanging heat with the first refrigerant that flows in the first circuit flows. The first refrigerant is a HFO refrigerant having a critical temperature higher than that of R32.
    Type: Application
    Filed: March 29, 2022
    Publication date: July 14, 2022
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Atsushi YOSHIMI, Eiji KUMAKURA, Ikuhiro IWATA, Takeru MIYAZAKI, Takuro YAMADA, Yoshiki YAMANOI, Yuuta IYOSHI
  • Publication number: 20220221205
    Abstract: A refrigeration cycle device includes a heat source, a first use unit, a second use unit, a first connection flow path, and a second connection flow path. The heat source has a compressor and a heat-source side heat exchanger. The first use unit is separated from the heat source unit and has a first use-side heat exchanger. The second use unit is separated from the heat source unit and has a second use-side heat exchanger. The first connection flow path connects the heat source unit to the first and the second use units and causes a first refrigerant to flow. The second connection flow path connects the heat source unit to the first and the second use units and causes a second refrigerant to flow. A specific enthalpy of the second refrigerant is smaller than a specific enthalpy of the first refrigerant.
    Type: Application
    Filed: March 30, 2022
    Publication date: July 14, 2022
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Takuro Yamada, Atsushi Yoshimi, Eiji Kumakura, Ikuhiro Iwata, Takeru Miyazaki, Hiromune Matsuoka
  • Publication number: 20220221196
    Abstract: A heat-source-side heat exchanger is divided so that a heat-source-side heat exchanger that functions as an evaporator also functions as an intermediate cooler. Since, when an air conditioner includes a bypass pipe, a heat-source-side heat exchanger that functions as an evaporator and as an intermediate cooler also further functions as a radiator, operation efficiency is increased.
    Type: Application
    Filed: March 29, 2022
    Publication date: July 14, 2022
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Atsushi YOSHIMI, Takuro YAMADA, Eiji KUMAKURA, Ikuhiro IWATA, Takeru MIYAZAKI
  • Publication number: 20220214056
    Abstract: An air conditioner includes: use-side units that are each switchable between a cooling operation and a heating operation; and a heat-source-side unit including a compressor, a discharge pipe through which a refrigerant discharged from the compressor flows, a first main heat-source-side flow path and a second main heat-source-side flow path that branch off from the discharge pipe, a first heat-source-side heat exchanger, a second heat-source-side heat exchanger, a first economizer heat exchanger, and a second economizer heat exchanger. The first heat-source-side heat exchanger is connected to the first economizer heat exchanger in series in the first main heat-source-side flow path. The second heat-source-side heat exchanger is connected to the second economizer heat exchanger in series in the second main heat-source-side flow path.
    Type: Application
    Filed: March 25, 2022
    Publication date: July 7, 2022
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Atsushi Yoshimi, Takuro Yamada, Eiji Kumakura, Ikuhiro Iwata, Takeru Miyazaki
  • Publication number: 20220214089
    Abstract: A refrigeration apparatus includes: a compressor; an outdoor heat exchanger connected to the compressor; an indoor heat exchanger connected to the compressor; and an expansion valve disposed between the outdoor heat exchanger and the indoor heat exchanger. In cooling operation, a refrigerant flows through the compressor, the outdoor heat exchanger, the expansion valve, and the indoor heat exchanger in this order. In heating operation, the refrigerant flows through the compressor, the indoor heat exchanger, the expansion valve, and the outdoor heat exchanger in this order. The refrigerant is an HFO (hydrofluoroolefin) refrigerant or a refrigerant mixture that includes an HFO refrigerant. The indoor heat exchanger and the outdoor heat exchanger are cross-fin-type heat exchangers or stack-type heat exchangers.
    Type: Application
    Filed: March 28, 2022
    Publication date: July 7, 2022
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Ikuhiro Iwata, Eiji Kumakura, Takuro Yamada, Ryuhei Kaji, Tomoki Hirokawa
  • Publication number: 20220214085
    Abstract: An evaporator includes: fins disposed at a predetermined interval in a fin thickness direction; heat transfer tubes extending through the fins in the fin thickness direction; and a first heat exchange section in which, when the heat transfer tubes are viewed in the fin thickness direction, a center of distribution of the heat transfer tubes in an airflow direction is disposed on a leeward side of a center of the fins in the airflow direction. The evaporator is disposed in a refrigeration cycle apparatus in which a non-azeotropic refrigerant mixture is enclosed.
    Type: Application
    Filed: March 27, 2022
    Publication date: July 7, 2022
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Eiji Kumakura, Ikuhiro Iwata, Takuro Yamada, Ryuhei Kaji, Tomoki Hirokawa
  • Patent number: 11326819
    Abstract: A refrigeration apparatus includes a refrigerant circuit including: a compressor, a radiator, an expansion mechanism, and an evaporator. The refrigerant circuit encloses a refrigerant that contains a fluorinated hydrocarbon that causes a disproportionation reaction. The refrigerant circuit further includes: a discharged refrigerant recovery receiver that is connected to a path between a discharge side of the compressor and a gas side of the radiator through a discharged refrigerant branch pipe; and a discharged refrigerant relief mechanism that is disposed in the discharged refrigerant branch pipe and that connects the discharge side of the compressor with the discharged refrigerant recovery receiver when the refrigerant on the discharge side of the compressor satisfies a predetermined condition.
    Type: Grant
    Filed: January 26, 2018
    Date of Patent: May 10, 2022
    Assignee: DAIKIN INDUSTRIES, LTD.
    Inventors: Ikuhiro Iwata, Kazuhiro Furusho
  • Publication number: 20220003461
    Abstract: In order to increase the evaporation capacity of a use-side heat exchanger regardless of operating conditions, a suction injection pipe and a subcooling heat exchanger are provided at a main refrigerant circuit in which a main refrigerant circulates. Further, a sub-refrigerant circuit that differs from the main refrigerant circuit and in which a sub-refrigerant circulates is provided. A controller performs control for switching between a cooling action of the subcooling heat-exchanger that cools the main refrigerant that is sent to a main use-side heat exchanger by using the suction injection pipe and the subcooling heat exchanger, and a cooling action of the sub-refrigerant-circuit that cools the main refrigerant that is sent to the main use-side heat exchanger by using the sub-refrigerant circuit 80.
    Type: Application
    Filed: September 27, 2019
    Publication date: January 6, 2022
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Ikuhiro IWATA, Eiji KUMAKURA, Kazuhiro FURUSHO, Ryusuke FUJIYOSHI, Hiromune MATSUOKA
  • Publication number: 20220003470
    Abstract: Efficiency in refrigerant charging work is addressed when a refrigerant recovered from the first heat source unit is to be charged to a second heat source unit. In a refrigerant charging method in which a first heat source unit of an already installed refrigeration cycle apparatus in which a refrigeration cycle is to be performed by a refrigerant that circulates is replaced with a second heat source unit, transferring the refrigerant from the first heat source unit to the second heat source unit is included. In addition, the method includes measuring the weight of the refrigerant that is transferred from the first heat source unit to the second heat source unit.
    Type: Application
    Filed: September 20, 2019
    Publication date: January 6, 2022
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Takuro YAMADA, Atsushi YOSHIMI, Eiji KUMAKURA, Ikuhiro IWATA
  • Publication number: 20220003469
    Abstract: There is provided a refrigerant charging method in which a foreign material and moisture are avoided from entering a heat source unit until a refrigeration cycle apparatus is configured. The refrigerant charging method is a method of charging a refrigerant to a refrigerant circuit in which a refrigeration cycle is to be performed by a circulating refrigerant, the refrigerant circuit being configured by connecting a second heat source unit and a utilization unit to each other. The refrigerant charging method includes charging a first refrigerant to the second heat source unit before connecting the second heat source unit to the utilization unit to configure the refrigerant circuit, and connecting the second heat source unit to the utilization unit and charging a second refrigerant that differs from the first refrigerant to the refrigerant circuit to obtain the circulating refrigerant that includes the second refrigerant and the first refrigerant that is charged in the second heat source unit.
    Type: Application
    Filed: September 20, 2019
    Publication date: January 6, 2022
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Takuro YAMADA, Atsushi YOSHIMI, Eiji KUMAKURA, Ikuhiro IWATA, Shun OHKUBO
  • Publication number: 20210372671
    Abstract: A refrigeration cycle device that includes a main refrigerant circuit and a sub-refrigerant circuit cools or heats a main refrigerant that flows between a main heat-source-side heat exchanger and a main usage-side heat exchanger by causing a sub-usage-side heat exchanger to function as an evaporator or a radiator of a sub-refrigerant. A first main expansion mechanism and a second main expansion mechanism that decompress the main refrigerant are provided on an upstream side and a downstream side of the sub-usage-side heat exchanger of the main refrigerant circuit.
    Type: Application
    Filed: September 30, 2019
    Publication date: December 2, 2021
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Ikuhiro IWATA, Eiji KUMAKURA, Kazuhiro FURUSHO, Ryusuke FUJIYOSHI, Hiromune MATSUOKA
  • Publication number: 20210356177
    Abstract: At a refrigeration cycle device, an injection pipe and an economizer heat exchanger are provided at a main refrigerant circuit. In addition, the refrigeration cycle device includes a sub-refrigerant circuit having a sub-usage-side heat exchanger. At the refrigeration cycle device, the sub-usage-side heat exchanger functions as an evaporator of a sub-refrigerant and cools a main refrigerant that has been cooled at the economizer heat exchanger, or functions as a radiator of the sub-refrigerant and heats the main refrigerant that has been cooled at the economizer heat exchanger.
    Type: Application
    Filed: September 30, 2019
    Publication date: November 18, 2021
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Eiji KUMAKURA, Ikuhiro IWATA, Kazuhiro FURUSHO, Ryusuke FUJIYOSHI, Hiromune MATSUOKA