Patents by Inventor Ilan JEN-LA PLANTE

Ilan JEN-LA PLANTE has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240263069
    Abstract: Disclosed are nanostructures comprising Ag, In, Ga, and S and a shell comprising Ag, Ga and S, wherein the nanostructures have a peak wavelength emission of 480-545 nm and wherein at least about. 80% of the emission is band-edge emission. Also disclosed are methods of making the nanostructures.
    Type: Application
    Filed: March 28, 2024
    Publication date: August 8, 2024
    Inventors: Ashenafi Damtew MAMUYE, Christopher SUNDERLAND, Ilan JEN-LA PLANTE, Chunming WANG, John J. CURLEY, Nahyoung KIM, Ravisubhash TANGIRALA
  • Patent number: 12049582
    Abstract: This disclosure pertains to the field of nanotechnology. The disclosure provides methods of preparing nanostructures using in situ prepared zinc dioleate and/or a metal halide. The nanostructures have high quantum yield, narrow emission peak width, tunable emission wavelength, and colloidal stability. Also provided are nanostructures prepared using the methods. And, nanostructure films and molded articles comprising the nanostructures are also provided.
    Type: Grant
    Filed: April 14, 2020
    Date of Patent: July 30, 2024
    Assignee: SHOEI CHEMICAL INC.
    Inventors: Yeewah Annie Chow, Jason Hartlove, Charles Hotz, Chunming Wang, Wenzhou Guo, Ilan Jen-La Plante, Jason Travis Tillman, John J. Curley, Christian Ippen, Alexander Tu, Ke Gong, Minghu Tu
  • Patent number: 11970646
    Abstract: Disclosed are nanostructures comprising Ag, In, Ga, and S and a shell comprising Ag, Ga and S, wherein the nanostructures have a peak wavelength emission of 480-545 nm and wherein at least about 80% of the emission is band-edge emission. Also disclosed are methods of making the nanostructures.
    Type: Grant
    Filed: June 18, 2020
    Date of Patent: April 30, 2024
    Assignee: SHOEI CHEMICAL INC.
    Inventors: Ashenafi Damtew Mamuye, Christopher Sunderland, Ilan Jen-La Plante, Chunming Wang, John J. Curley, Nahyoung Kim, Ravisubhash Tangirala
  • Patent number: 11549058
    Abstract: This disclosure pertains to the field of nanotechnology. The disclosure provides nanostructure compositions comprising (a) at least one population of nanostructures; (b) at least one metal halide bound to the surface of the nanostructures; and (c) at least one metal carboxylate bound to the surface of the nanostructures. The nanostructure compositions have high quantum yield, narrow emission peak width, tunable emission wavelength, and colloidal stability. Also provided are methods of preparing the nanostructure compositions. And, nanostructure films and molded articles comprising the nanostructure compositions are also provided.
    Type: Grant
    Filed: January 24, 2020
    Date of Patent: January 10, 2023
    Assignee: Nanosys, Inc.
    Inventors: Ilan Jen-La Plante, Yeewah Annie Chow, John J. Curley, Wenzhou Guo, Alexander Tu, Chunming Wang
  • Patent number: 11434423
    Abstract: The invention pertains to the field of nanotechnology. More particularly, the invention relates to highly luminescent nanostructures, particularly highly luminescent nanostructures comprising an indium-doped ZnSe core and ZnS and/or ZnSe shell layers. The invention also relates to methods of producing such nanostructures.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: September 6, 2022
    Assignee: Nanosys, Inc.
    Inventors: Jonathan Truskier, Christian Ippen, Jesse Manders, Ilan Jen-La Plante
  • Patent number: 11428988
    Abstract: Embodiments of a display device are described. The display device includes a liquid crystal display (LCD) module and a backlight unit designed to emit a primary light in a first wavelength region of an electromagnetic (EM) spectrum. The LCD module includes an array of pixels having at least one pixel with a sub-pixel that includes a layer of luminescent nanostructures and a layer of fluorescent material. The layer of luminescent nanostructures absorbs the primary light and emits a second light in a second wavelength region of the EM spectrum different from the first wavelength region. The layer of fluorescent material absorbs the primary light that has passed through the layer of luminescent nanostructures, and emits a third light in the second wavelength region of the EM spectrum.
    Type: Grant
    Filed: August 23, 2019
    Date of Patent: August 30, 2022
    Assignee: Nanosys, Inc.
    Inventors: Ernest C. Lee, Ilan Jen-La Plante
  • Publication number: 20220228057
    Abstract: Disclosed are nanostructures comprising Ag, In, Ga, and S and a shell comprising Ag, Ga and S, wherein the nanostructures have a peak wavelength emission of 480-545 nm and wherein at least about 80% of the emission is band-edge emission. Also disclosed are methods of making the nanostructures.
    Type: Application
    Filed: June 18, 2020
    Publication date: July 21, 2022
    Applicant: NANOSYS, INC.
    Inventors: Ashenafi Damtew MAMUYE, Christopher SUNDERLAND, Ilan JEN-LA PLANTE, Chunming WANG, John J. CURLEY, Nahyoung KIM, Ravisubhash TANGIRALA
  • Patent number: 11021651
    Abstract: The present invention provides nanostructure compositions and methods of producing nanostructure compositions. The nanostructure compositions comprise a population of nanostructures comprising thiol-functionalized ligands to increase the stability of the composition in thiol resins. The present invention also provides nanostructure films comprising a population of nanostructures comprising thiol-functionalized ligands and methods of making nanostructure films using these nanostructures.
    Type: Grant
    Filed: June 7, 2018
    Date of Patent: June 1, 2021
    Assignee: Nanosys, Inc.
    Inventors: Ilan Jen-La Plante, Chunming Wang
  • Patent number: 10927294
    Abstract: Disclosed are nanostructures comprising Ag, In, Ga, and S and a shell comprising Ag, Ga and S, wherein the nanostructures have a peak wavelength emission of 480-545 nm and wherein at least about 80% of the emission is band-edge emission. Also disclosed are methods of making the nanostructures.
    Type: Grant
    Filed: June 18, 2020
    Date of Patent: February 23, 2021
    Assignee: Nanosys, Inc.
    Inventors: Ashenafi Damtew Mamuye, Christopher Sunderland, Ilan Jen-La Plante, Chunming Wang, John J. Curley
  • Publication number: 20200399535
    Abstract: Disclosed are nanostructures comprising Ag, In, Ga, and S and a shell comprising Ag, Ga and S, wherein the nanostructures have a peak wavelength emission of 480-545 nm and wherein at least about 80% of the emission is band-edge emission. Also disclosed are methods of making the nanostructures.
    Type: Application
    Filed: June 18, 2020
    Publication date: December 24, 2020
    Applicant: Nanosys, Inc.
    Inventors: Ashenafi Damtew MAMUYE, Christopher SUNDERLAND, Ilan JEN-LA PLANTE, Chunming WANG, John J. CURLEY
  • Publication number: 20200325396
    Abstract: This disclosure pertains to the field of nanotechnology. The disclosure provides methods of preparing nanostructures using in situ prepared zinc dioleate and/or a metal halide. The nanostructures have high quantum yield, narrow emission peak width, tunable emission wavelength, and colloidal stability. Also provided are nanostructures prepared using the methods. And, nanostructure films and molded articles comprising the nanostructures are also provided.
    Type: Application
    Filed: April 14, 2020
    Publication date: October 15, 2020
    Applicant: Nanosys, Inc.
    Inventors: Yeewah Annie CHOW, Jason HARTLOVE, Charles HOTZ, Chunming WANG, Wenzhou GUO, Ilan JEN-LA PLANTE, Jason Travis TILLMAN, John J. CURLEY, Christian IPPEN, Alexander TU, Ke GONG, Minghu TU
  • Patent number: 10767112
    Abstract: The present invention is directed to methods of preparing metal sulfide, metal selenide, or metal sulfide/selenide nanoparticles and the products derived therefrom. In various embodiments, the nanoparticles are derived from the reaction between precursor metal salts and certain sulfur- and/or selenium-containing precursors each independently having a structure of Formula (I), (II), or (III), or an isomer, salt, or tautomer thereof, where Q1, Q2, Q3, R1, R2, R3, R5, and X are defined within the specification.
    Type: Grant
    Filed: January 15, 2016
    Date of Patent: September 8, 2020
    Assignee: The Trustees of the Columbia University in the City of New York
    Inventors: Jonathan S. Owen, Mark P. Hendricks, Michael P. Campos, Gregory T. Cleveland, Ilan Jen-La Plante, Leslie Sachiyo Hamachi
  • Publication number: 20200239769
    Abstract: This disclosure pertains to the field of nanotechnology. The disclosure provides nanostructure compositions comprising (a) at least one population of nanostructures; (b) at least one metal halide bound to the surface of the nanostructures; and (c) at least one metal carboxylate bound to the surface of the nanostructures. The nanostructure compositions have high quantum yield, narrow emission peak width, tunable emission wavelength, and colloidal stability. Also provided are methods of preparing the nanostructure compositions. And, nanostructure films and molded articles comprising the nanostructure compositions are also provided.
    Type: Application
    Filed: January 24, 2020
    Publication date: July 30, 2020
    Applicant: Nanosys, Inc.
    Inventors: Ilan JEN-LA PLANTE, Yeewah Annie CHOW, John J. CURLEY, Wenzhou GUO, Alexander TU, Chunming WANG
  • Publication number: 20200243713
    Abstract: The invention is in the field of nanostructure synthesis. Provided are highly luminescent nanostructures, particularly highly luminescent quantum dots, comprising a nanocrystal core and at least two thin shell layers. The nanostructures may have additional shell layers. Also provided are methods of preparing the nanostructures, films comprising the nanostructures, and devices comprising the nanostructures.
    Type: Application
    Filed: January 24, 2020
    Publication date: July 30, 2020
    Applicant: Nanosys, Inc.
    Inventors: Christopher SUNDERLAND, Ilan JEN-LA PLANTE, Alexander TU, Chunming WANG, Wenzhou GUO
  • Publication number: 20200073178
    Abstract: Embodiments of a display device are described. The display device includes a liquid crystal display (LCD) module and a backlight unit designed to emit a primary light in a first wavelength region of an electromagnetic (EM) spectrum. The LCD module includes an array of pixels having at least one pixel with a sub-pixel that includes a layer of luminescent nanostructures and a layer of fluorescent material. The layer of luminescent nanostructures absorbs the primary light and emits a second light in a second wavelength region of the EM spectrum different from the first wavelength region. The layer of fluorescent material absorbs the primary light that has passed through the layer of luminescent nanostructures, and emits a third light in the second wavelength region of the EM spectrum.
    Type: Application
    Filed: August 23, 2019
    Publication date: March 5, 2020
    Applicant: Nanosys, Inc.
    Inventors: Ernest C. LEE, Ilan Jen-La Plante
  • Publication number: 20200010761
    Abstract: The invention pertains to the field of nanotechnology. More particularly, the invention relates to highly luminescent nanostructures, particularly highly luminescent nanostructures comprising an indium-doped ZnSe core and ZnS and/or ZnSe shell layers. The invention also relates to methods of producing such nanostructures.
    Type: Application
    Filed: June 28, 2019
    Publication date: January 9, 2020
    Inventors: Jonathan TRUSKIER, Christian IPPEN, Jesse MANDERS, Ilan Jen-La PLANTE
  • Publication number: 20190273178
    Abstract: The invention is in the field of nanostructure synthesis. Provided are highly luminescent nanostructures, particularly highly luminescent quantum dots, comprising a nanocrystal core and a thin inner shell layer. The nanostructures may have an additional outer shell layer. Also provided are methods of preparing the nanostructures, films comprising the nanostructures, and devices comprising the nanostructures.
    Type: Application
    Filed: March 5, 2019
    Publication date: September 5, 2019
    Applicant: NANOSYS, INC.
    Inventors: Ilan Jen-La Plante, Chunming WANG, Ernest Chung-Wei LEE
  • Publication number: 20180354244
    Abstract: The present invention provides nanostructure compositions and methods of producing nanostructure compositions. The nanostructure compositions comprise a population of nanostructures comprising thiol-functionalized ligands to increase the stability of the composition in thiol resins. The present invention also provides nanostructure films comprising a population of nanostructures comprising thiol-functionalized ligands and methods of making nanostructure films using these nanostructures.
    Type: Application
    Filed: June 7, 2018
    Publication date: December 13, 2018
    Applicant: Nanosys, Inc.
    Inventors: Ilan JEN-LA PLANTE, Chunming WANG
  • Publication number: 20170306227
    Abstract: Highly luminescent nanostructures, particularly highly luminescent quantum dots, comprising a nanocrystal core and thick shells of ZnSe and ZnS, are provided. The nanostructures may have one or more gradient ZnSexS1-x monolayers between the ZnSe and ZnS shells, wherein the value of x decreases gradually from the interior to the exterior of the nanostructure. Also provided are methods of preparing the nanostructures comprising a high temperature synthesis method. The thick shell nanostructures of the present invention display increased stability and are able to maintain high levels of photoluminescent intensity over long periods of time. Also provided are nanostructures with increased blue light absorption.
    Type: Application
    Filed: April 26, 2017
    Publication date: October 26, 2017
    Inventors: Christian IPPEN, Ilan JEN-LA PLANTE, Shihai KAN, Chunming WANG, Wenzhuo GUO, Yeewah Annie CHOW