Patents by Inventor Indranil S. Sen

Indranil S. Sen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11265929
    Abstract: A secure ranging system can use a secure processing system to deliver one or more ranging keys to a ranging radio on a device, and the ranging radio can derive locally at the system ranging codes based on the ranging keys. A deterministic random number generator can derive the ranging codes using the ranging key and one or more session parameters, and each device (e.g. a cellular telephone and another device) can independently derive the ranging codes and derive them contemporaneously with their use in ranging operations.
    Type: Grant
    Filed: April 14, 2017
    Date of Patent: March 1, 2022
    Assignee: APPLE INC.
    Inventors: Jerrold V. Hauck, Alejandro J. Marquez, Timothy R. Paaske, Indranil S. Sen, Herve Sibert, Yannick L. Sierra, Raman S. Thiara
  • Patent number: 11218876
    Abstract: Wireless communication between two electronic devices may be used to determine a distance between the two devices, even in the presence of an otherwise-disruptive attacker. A wireless receiver system of one device may receive a true wireless ranging signal from a first transmitting device and a false wireless ranging signal from an attacker. The wireless receiver system may correlate the wireless signals with a known preamble sequence and perform channel estimation using the result, obtaining a channel impulse response for the wireless signals. The wireless receiver system may filter the channel impulse response for the plurality of wireless signals by removing at least part of the channel impulse response due to the false wireless ranging signal while not removing at least part of the channel impulse response due to the true wireless ranging signal. The receiver system may perform a wireless ranging operation using the filtered channel impulse response.
    Type: Grant
    Filed: January 30, 2018
    Date of Patent: January 4, 2022
    Assignee: Apple Inc.
    Inventors: Shang-Te Yang, Xu Chen, Alejandro J. Marquez, Mohit Narang, Indranil S. Sen
  • Patent number: 11212642
    Abstract: Methods and devices are provided for allowing a mobile device (e.g., a key fob or a consumer electronic device, such as a mobile phone, watch, or other wearable device) to interact with a vehicle such that a location of the mobile device can be determined by the vehicle, thereby enabling certain functionality of the vehicle. A device may include both RF antenna(s) and magnetic antenna(s) for determining a location of a mobile device relative to the vehicle. Such a hybrid approach can provide various advantages. Existing magnetic coils on a mobile device (e.g., for charging or communication) may be re-used for distance measurements that are supplemented by the RF measurements. Any device antenna may provide measurements to a machine learning model that determines a region in which the mobile device resides, based on training measurements in the regions.
    Type: Grant
    Filed: April 1, 2019
    Date of Patent: December 28, 2021
    Assignee: Apple Inc.
    Inventors: Brent M. Ledvina, Robert W. Brumley, Robert William Mayor, William J. Bencze, Alejandro J. Marquez, Shang-Te Yang, Xu Chen, Indranil S. Sen, Mohit Narang
  • Patent number: 11184810
    Abstract: Methods and apparatuses are presented to locate a wireless communication device. A target device may be out of range of a source device for normal ranging communications according to a first radio access technology (RAT), such as ultra wideband (UWB) communications. A source device may therefore modify communications according to the first RAT, to increase the transmit power, while removing the data payload. The target device may utilize the signal strength and angle of arrival of the modified communications to guide the user to move toward the source device, e.g., until the target device is within range to perform normal ranging communications. A second RAT, such as Bluetooth, may be used to communicate between the two devices while the target device is out of range of the first RAT. For example, the target device may use the second RAT to communicate to the source device to start/stop transmitting modified communications.
    Type: Grant
    Filed: August 14, 2019
    Date of Patent: November 23, 2021
    Assignee: Apple Inc.
    Inventors: Vusthla Sunil Reddy, Alejandro J. Marquez, Indranil S. Sen, Manjit S. Walia, Peter M. Agboh, Shang-Te Yang, Xiaoming Yu
  • Patent number: 11150717
    Abstract: A technique for dynamically adjusting power use of an input/output (I/O) interface of an electronic device is provided. The electronic device includes an input/output (I/O) interface that facilitates electronic communications with a receiving electronic device, at a particular transmission rate that is dynamically changeable by the electronic device. Transmission power and transmission rate adjustment circuitry determines whether a step-down in a transmission power used for signal transmission at the particular transmission rate is desirable. When desirable, the transmission power is dynamically adjusted down one step, such that less power is used by the I/O interface during the electronic communications.
    Type: Grant
    Filed: September 12, 2019
    Date of Patent: October 19, 2021
    Assignee: Apple Inc.
    Inventors: Diego C. Hernandez, Harneet Singh Oberoi, Indranil S. Sen, Kevin C. Camilleri, Raghuram C. Kamath, Vusthla Sunil Reddy
  • Publication number: 20210297809
    Abstract: Methods and devices useful in performing precise indoor localization and tracking are provided. By way of example, a method includes locating and tracking, via a first wireless electronic device, a plurality of other wireless electronic devices within an indoor environment. The method also includes performing front-back detection, performing stationary node detection, performing angle of arrival (AoA) error correction, and performing field of view (FOV) filtering. Performing indoor localization and tracking of the plurality of other wireless electronic devices includes providing an indication of a physical location of the plurality of other wireless electronic devices within the indoor environment.
    Type: Application
    Filed: June 7, 2021
    Publication date: September 23, 2021
    Inventors: Amit S. Sant, Alejandro J. Marquez, Indranil S. Sen, Mohit Narang, Shang-Te Yang
  • Publication number: 20210234577
    Abstract: Devices and systems useful in concurrently receiving and transmitting Wi-Fi signals and Bluetooth signals in the same frequency band are provided. By way of example, an electronic device includes a transceiver configured to transmit data and to receive data over channels of a first wireless network and a second wireless network concurrently. The transceiver includes a plurality of filters configured to allow the transceiver to transmit the data and to receive the data in the same frequency band by reducing interference between signals of the first wireless network and the second wireless network.
    Type: Application
    Filed: April 12, 2021
    Publication date: July 29, 2021
    Inventors: Hsin-Yuo Liu, Peter M. Agboh, Mohit Narang, Indranil S. Sen, Nicholas M. McDonnell, Chia Yiaw Chong
  • Patent number: 11061490
    Abstract: A wireless power transmission system may include a wireless power transmitting device such as a tablet computer and a wireless power receiving device such as a computer stylus. A wireless power transmitting capacitor electrode may be formed in the tablet computer. A wireless power receiving capacitor electrode may be formed in the computer stylus. The transmitting capacitor electrode may be driven by a drive signal having a frequency of 900 MHz or greater to produce wireless power. The wireless power may be transmitted from the transmitting capacitor electrode to the receiving capacitor electrode on the stylus via near field capacitive coupling. The transmitting and receiving capacitor electrodes may each include conductive traces on dielectric substrates. The conductive traces may follow meandering paths to maximize the possible capacitive coupling efficiency between the capacitor electrodes and thus the end-to-end charging efficiency of the wireless power transmission system.
    Type: Grant
    Filed: June 26, 2020
    Date of Patent: July 13, 2021
    Assignee: Apple Inc.
    Inventors: Bing Jiang, Blake R. Marshall, Indranil S. Sen, Liquan Tan, Reza Nasiri Mahalati, Yi Jiang, Mohit Narang
  • Publication number: 20210184714
    Abstract: A dynamic specific absorption rate (SAR) may be implemented by monitoring and controlling power utilization of the various radio frequency (RF) emitting components over time within a mobile device. Power utilization may be tracked and modified to control the time-averaged RF exposure over a rolling time window. Periodically calculations of the updated rolling averages for RF transmissions may be performed based on the transmission data received from the mobile device components, and the continuously updated rolling averages of RF transmissions may be compared to time-average power utilization limits. Based on such comparisons, the mobile device may dynamically adjust the current transmissions of the radio transceivers and other RF emitting components on the mobile device.
    Type: Application
    Filed: March 1, 2021
    Publication date: June 17, 2021
    Inventors: Digvijay A. Jadhav, Gary Leung, Mark D. Neumann, Indranil S. Sen
  • Publication number: 20210185620
    Abstract: Multi-radio wireless network devices are capable of transmitting and/or receiving data from multiple radiofrequency (RF) networks at different bands. Total transmission power limitations may be in place due to, for example, safety reasons. As a result, active management of transmission power may be performed during simultaneous transmission in different bands and/or networks. In some embodiments, the management may take place on group-by-group basis and a network-by-network basis. Antennas may be grouped based on their relative positions and impact on radiation emitted by the devices.
    Type: Application
    Filed: March 1, 2021
    Publication date: June 17, 2021
    Inventors: Digvijay Arjunrao Jadhav, Indranil S. Sen, Jonathan C. King, Mohit Narang, Prathyusha Sangepu, Qiong Wu, Shrenik Milapchand, Vijay Gadde, Yu Chen
  • Patent number: 11032668
    Abstract: Methods and devices useful in performing precise indoor localization and tracking are provided. By way of example, a method includes locating and tracking, via a first wireless electronic device, a plurality of other wireless electronic devices within an indoor environment. The method also includes performing front-back detection, performing stationary node detection, performing angle of arrival (AoA) error correction, and performing field of view (FOV) filtering. Performing indoor localization and tracking of the plurality of other wireless electronic devices includes providing an indication of a physical location of the plurality of other wireless electronic devices within the indoor environment.
    Type: Grant
    Filed: July 15, 2019
    Date of Patent: June 8, 2021
    Assignee: Apple Inc.
    Inventors: Amit S. Sant, Alejandro J. Marquez, Indranil S. Sen, Mohit Narang, Shang-Te Yang
  • Patent number: 10979106
    Abstract: Devices and systems useful in concurrently receiving and transmitting Wi-Fi signals and Bluetooth signals in the same frequency band are provided. By way of example, an electronic device includes a transceiver configured to transmit data and to receive data over channels of a first wireless network and a second wireless network concurrently. The transceiver includes a plurality of filters configured to allow the transceiver to transmit the data and to receive the data in the same frequency band by reducing interference between signals of the first wireless network and the second wireless network.
    Type: Grant
    Filed: May 14, 2020
    Date of Patent: April 13, 2021
    Assignee: Apple Inc.
    Inventors: Hsin-Yuo Liu, Peter M. Agboh, Mohit Narang, Indranil S. Sen, Nicholas M. McDonnell, Chia Yiaw Chong
  • Publication number: 20210099194
    Abstract: A dynamic specific absorption rate (SAR) may be implemented by monitoring and controlling power utilization of the various radio frequency (RF) emitting components over time within a mobile device. Power utilization may be tracked and modified to control the time-averaged RF exposure over a rolling time window. Periodically calculations of the updated rolling averages for RF transmissions may be performed based on the transmission data received from the mobile device components, and the continuously updated rolling averages of RF transmissions may be compared to time-average power utilization limits. Based on such comparisons, the mobile device may dynamically adjust the current transmissions of the radio transceivers and other RF emitting components on the mobile device.
    Type: Application
    Filed: February 11, 2020
    Publication date: April 1, 2021
    Applicant: Apple Inc.
    Inventors: Digvijay A. Jadhav, Gary Leung, Mark D. Neumann, Indranil S. Sen
  • Patent number: 10965335
    Abstract: A dynamic specific absorption rate (SAR) may be implemented by monitoring and controlling power utilization of the various radio frequency (RF) emitting components over time within a mobile device. Power utilization may be tracked and modified to control the time-averaged RF exposure over a rolling time window. Periodically calculations of the updated rolling averages for RF transmissions may be performed based on the transmission data received from the mobile device components, and the continuously updated rolling averages of RF transmissions may be compared to time-average power utilization limits. Based on such comparisons, the mobile device may dynamically adjust the current transmissions of the radio transceivers and other RF emitting components on the mobile device.
    Type: Grant
    Filed: February 11, 2020
    Date of Patent: March 30, 2021
    Assignee: Apple Inc.
    Inventors: Digvijay A. Jadhav, Gary Leung, Mark D. Neumann, Indranil S. Sen
  • Patent number: 10939387
    Abstract: Multi-radio wireless network devices are capable of transmitting and/or receiving data from multiple radiofrequency (RF) networks at different bands. Total transmission power limitations may be in place due to, for example, safety reasons. As a result, active management of transmission power may be performed during simultaneous transmission in different bands and/or networks. In some embodiments, the management may take place on group-by-group basis and a network-by-network basis. Antennas may be grouped based on their relative positions and impact on radiation emitted by the devices.
    Type: Grant
    Filed: April 11, 2019
    Date of Patent: March 2, 2021
    Assignee: Apple Inc.
    Inventors: Digvijay Arjunrao Jadhav, Indranil S. Sen, Jonathan C. King, Mohit Narang, Prathyusha Sangepu, Qiong Wu, Shrenik Milapchand, Vijay Gadde, Yu Chen
  • Publication number: 20210051532
    Abstract: Methods and apparatuses are presented to locate a wireless communication device. A target device may be out of range of a source device for normal ranging communications according to a first radio access technology (RAT), such as ultra wideband (UWB) communications. A source device may therefore modify communications according to the first RAT, to increase the transmit power, while removing the data payload. The target device may utilize the signal strength and angle of arrival of the modified communications to guide the user to move toward the source device, e.g., until the target device is within range to perform normal ranging communications. A second RAT, such as Bluetooth, may be used to communicate between the two devices while the target device is out of range of the first RAT. For example, the target device may use the second RAT to communicate to the source device to start/stop transmitting modified communications.
    Type: Application
    Filed: August 14, 2019
    Publication date: February 18, 2021
    Inventors: Vusthla Sunil Reddy, Alejandro J. Marquez, Indranil S. Sen, Manjit S. Walia, Peter M. Agboh, Shang-Te Yang, Xiaoming Yu
  • Publication number: 20200403665
    Abstract: Systems, methods, and devices for grouping client devices based on sensor data in an assisted wireless communication system are provided. Sensor data may include device mobility, device type, and device application data usage, among other characteristics. An assisted wireless communication system may include client devices sending data to an access point. The clients may send conventional protocol data over a channel and, concurrently, send sensor data over an alternative channel. In some cases, client devices may exchange their protocol data, modify their own protocol data based on the exchanged data, and send the modified protocol data to the access point. This may allow the clients to adjust their grouping.
    Type: Application
    Filed: September 9, 2020
    Publication date: December 24, 2020
    Inventors: Raghuram C. Kamath, Diego C. Hernandez, Harneet Singh Oberoi, Indranil S. Sen
  • Patent number: 10848409
    Abstract: Methods for a data-less ranging procedure may include initiating a ranging procedure via a polling message transmitted at a first time and receiving response messages at second and third times. The time intervals between the first and second time and the second and third times may be pre-defined. A time of flight may be calculated based on the pre-defined time intervals and the first, second, and third times.
    Type: Grant
    Filed: September 18, 2018
    Date of Patent: November 24, 2020
    Assignee: Apple Inc.
    Inventors: Alejandro J. Marquez, Shang-Te Yang, Mohit Narang, Indranil S. Sen, Joachim S. Hammerschmidt, Hung Kwan Oscar Au, Dineshan Poopalaratnam
  • Publication number: 20200326790
    Abstract: A wireless power transmission system may include a wireless power transmitting device such as a tablet computer and a wireless power receiving device such as a computer stylus. A wireless power transmitting capacitor electrode may be formed in the tablet computer. A wireless power receiving capacitor electrode may be formed in the computer stylus. The transmitting capacitor electrode may be driven by a drive signal having a frequency of 900 MHz or greater to produce wireless power. The wireless power may be transmitted from the transmitting capacitor electrode to the receiving capacitor electrode on the stylus via near field capacitive coupling. The transmitting and receiving capacitor electrodes may each include conductive traces on dielectric substrates. The conductive traces may follow meandering paths to maximize the possible capacitive coupling efficiency between the capacitor electrodes and thus the end-to-end charging efficiency of the wireless power transmission system.
    Type: Application
    Filed: June 26, 2020
    Publication date: October 15, 2020
    Inventors: Bing Jiang, Blake R. Marshall, Indranil S. Sen, Liquan Tan, Reza Nasiri Mahalati, Yi Jiang, Mohit Narang
  • Patent number: 10784931
    Abstract: Systems, methods, and devices for grouping client devices based on sensor data in an assisted wireless communication system are provided. Sensor data may include device mobility, device type, and device application data usage, among other characteristics. An assisted wireless communication system may include client devices sending data to an access point. The clients may send conventional protocol data over a channel and, concurrently, send sensor data over an alternative channel. In some cases, client devices may exchange their protocol data, modify their own protocol data based on the exchanged data, and send the modified protocol data to the access point. This may allow the clients to adjust their grouping.
    Type: Grant
    Filed: June 8, 2018
    Date of Patent: September 22, 2020
    Assignee: Apple Inc.
    Inventors: Raghuram C. Kamath, Diego C. Hernandez, Harneet Singh Oberoi, Indranil S. Sen