Patents by Inventor Ingo Röhl

Ingo Röhl has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130190484
    Abstract: The present invention is directed compositions for delivery of RNA interference (RNAi) polynucleotides to cells in vivo. The compositions comprise amphipathic membrane active polyamines reversibly modified with enzyme cleavable dipeptide-amidobenzyl-carbonate masking agents. Modification masks membrane activity of the polymer while reversibility provides physiological responsiveness. The reversibly modified polyamines (dynamic polyconjugate or DPC) are further covalently linked to an RNAi polynucleotide or co-administered with a targeted RNAi polynucleotide-targeting molecule conjugate.
    Type: Application
    Filed: March 15, 2013
    Publication date: July 25, 2013
    Applicant: ARROWHEAD MADISON INC.
    Inventors: David Rozema, David Lewis, Darren Wakefield, Eric Kitas, Philipp Hadwiger, Jon Wolff, Ingo Roehl, Peter Mohr, Torsten Hoffmann, Kerstin Jahn-Hofmann, Hans Martin Mueller, Guenther Ott, Andrei Blokhin, Jeffrey Carlson, Jonathan Benson
  • Publication number: 20130150570
    Abstract: This invention relates to modified double-stranded oligoribonucleic acid (dsRNA) having improved stability in cells and biological fluids, and methods of making and identifying dsRNA having improved stability, and of using the dsRNA to inhibit the expression or function of a target gene.
    Type: Application
    Filed: March 27, 2012
    Publication date: June 13, 2013
    Applicant: ALNYLAM PHARMACEUTICALS, INC.
    Inventors: Hans-Peter VORNLOCHER, Ingo ROEHL, Philipp HADWIGER, Tracy Stage ZIMMERMANN, Muthiah MANOHARAN, Kallanthottathil G. RAJEEV, Akin AKINC
  • Patent number: 8426554
    Abstract: The present invention is directed compositions for delivery of RNA interference (RNAi) polynucleotides to cells in vivo. The compositions comprise amphipathic membrane active polyamines reversibly modified with enzyme cleavable dipeptide-amidobenzyl-carbonate masking agents. Modification masks membrane activity of the polymer while reversibility provides physiological responsiveness. The reversibly modified polyamines (dynamic polyconjugate or DPC) are further covalently linked to an RNAi polynucleotide or co-administered with a targeted RNAi polynucleotide-targeting molecule conjugate.
    Type: Grant
    Filed: December 23, 2011
    Date of Patent: April 23, 2013
    Assignee: Arrowhead Madison Inc.
    Inventors: David B. Rozema, Darren H. Wakefield, David L. Lewis, Jon A. Wolff, Andrei V. Blokhin, Jonathan D. Benson, Jeffrey C. Carlson, Philipp Hadwiger, Eric A. Kitas, Torsten Hoffmann, Kerstin Jahn-Hoffmann, Peter Mohr, Hans Martin Mueller, Guenther Ott, Ingo Roehl
  • Patent number: 8334373
    Abstract: This invention relates to modified double-stranded oligoribonucleic acid (dsRNA) having improved stability in cells and biological fluids, and methods of making and identifying dsRNA having improved stability, and of using the dsRNA to inhibit the expression or function of a target gene.
    Type: Grant
    Filed: March 2, 2011
    Date of Patent: December 18, 2012
    Assignee: Alnylam Pharmaceuticals, Inc.
    Inventors: Hans-Peter Vornlocher, Ingo Roehl, Philipp Hadwiger, Tracy Stage Zimmermann, Muthiah Manoharan, Kallanthottathil G. Rajeev, Akin Akinc
  • Patent number: 8314075
    Abstract: The invention relates to a double-stranded ribonucleic acid (dsRNA) for inhibiting the expression of the Huntingtin gene (HD gene), comprising an antisense strand having a nucleotide sequence which is less than 25 nucleotides in length and which is substantially complementary to at least a part of the HD gene. The invention also relates to a pharmaceutical composition comprising the dsRNA together with a pharmaceutically acceptable carrier; methods for treating diseases caused by the expression of the HD gene, or a mutant form thereof, using the pharmaceutical composition; and methods for inhibiting the expression of the huntingtin gene in a cell.
    Type: Grant
    Filed: October 4, 2011
    Date of Patent: November 20, 2012
    Assignee: Alynylam Pharmaceuticals, Inc.
    Inventors: Dinah Wen-Yee Sah, Philipp Hadwiger, Ingo Roehl, Birgit Bramlage, Pamela Tan, Hans-Peter Vornlocher, David Bumcrot
  • Publication number: 20120172412
    Abstract: The present invention is directed compositions for delivery of RNA interference (RNAi) polynucleotides to cells in vivo. The compositions comprise amphipathic membrane active polyamines reversibly modified with enzyme cleavable dipeptide-amidobenzyl-carbonate masking agents. Modification masks membrane activity of the polymer while reversibility provides physiological responsiveness. The reversibly modified polyamines (dynamic polyconjugate or DPC) are further covalently linked to an RNAi polynucleotide or co-administered with a targeted RNAi polynucleotide-targeting molecule conjugate.
    Type: Application
    Filed: December 23, 2011
    Publication date: July 5, 2012
    Applicant: ARROWHEAD MADISON INC.
    Inventors: David B. Rozema, Darren H. Wakefield, David L. Lewis, Jon A. Wolff, Andrei V. Blokhin, Jonathan D. Benson, Jeffrey C. Carlson, Philipp Hadwiger, Eric A. Kitas, Torsten Hoffmann, Kerstin Jahn-Hofmann, Peter Mohr, Hans Martin Mueller, Guenther Ott, Ingo Roehl
  • Publication number: 20120165393
    Abstract: The present invention is directed compositions for targeted delivery of RNA interference (RNAi) polynucleotides to hepatocytes in vivo. Targeted RNAi polynucleotides are administered together with co-targeted melittin delivery peptides. Delivery peptides provide membrane penetration function for movement of the RNAi polynucleotides from outside the cell to inside the cell. Reversible modification provides physiological responsiveness to the delivery peptides.
    Type: Application
    Filed: December 15, 2011
    Publication date: June 28, 2012
    Applicant: ARROWHEAD MADISON INC.
    Inventors: David B. Rozema, Darren H. Wakefield, David L. Lewis, Jon A. Wolff, Andrei V. Blokhin, Jonathan D. Benson, Jeffrey C. Carlson, Philipp Hadwiger, Eric A. Kitas, Torsten Hoffman, Kerstin Jahn-Hofmann, Peter Mohr, Hans Martin Mueller, Guenther Ott, Ingo Roehl
  • Publication number: 20120157509
    Abstract: The present invention is directed compositions for targeted delivery of RNA interference (RNAi) polynucleotides to cell in vivo. The pharmacokinetic modulator improve in vivo targeting compared to the targeting ligand alone. Targeting ligand-pharmacokinetic modulator targeting moiety targeted RNAi polynucleotides can be administered in vivo alone or together with co-targeted delivery polymers.
    Type: Application
    Filed: December 15, 2011
    Publication date: June 21, 2012
    Inventors: Philipp Hadwiger, Torsten Hoffmann, Eric A. Kitas, Peter Mohr, Ingo Roehl, Linda Valis, David B. Rozema, David L. Lewis, Darren H. Wakefield
  • Publication number: 20120095076
    Abstract: The invention relates to a double-stranded ribonucleic acid (dsRNA) for inhibiting the expression of the Huntingtin gene (HD gene), comprising an antisense strand having a nucleotide sequence which is less than 25 nucleotides in length and which is substantially complementary to at least a part of the HD gene. The invention also relates to a pharmaceutical composition comprising the dsRNA together with a pharmaceutically acceptable carrier; methods for treating diseases caused by the expression of the HD gene, or a mutant form thereof, using the pharmaceutical composition; and methods for inhibiting the expression of the huntingtin gene in a cell.
    Type: Application
    Filed: October 4, 2011
    Publication date: April 19, 2012
    Inventors: Dinah Wen-Yee Sah, Philipp Hadwiger, Ingo Roehl, Birgit Bramlage, Pamela Tan, Hans-Peter Vornlocher, David Bumcrot
  • Patent number: 8080532
    Abstract: The invention relates to a double-stranded ribonucleic acid (dsRNA) for inhibiting the expression of the Huntingtin gene (HD gene), comprising an antisense strand having a nucleotide sequence which is less than 25 nucleotides in length and which is substantially complementary to at least a part of the HD gene. The invention also relates to a pharmaceutical composition comprising the dsRNA together with a pharmaceutically acceptable carrier; methods for treating diseases caused by the expression of the HD gene, or a mutant form thereof, using the pharmaceutical composition; and methods for inhibiting the expression of the huntingtin gene in a cell.
    Type: Grant
    Filed: April 2, 2009
    Date of Patent: December 20, 2011
    Assignee: Alnylam Pharmaceuticals, Inc.
    Inventors: Dinah Wen-Yee Sah, Philipp Hadwiger, Ingo Roehl, Birgit Bramlage, Pamela Tan, Hans-Peter Vornlocher, David Bumcrot
  • Publication number: 20110245320
    Abstract: This invention relates to modified double-stranded oligoribonucleic acid (dsRNA) having improved stability in cells and biological fluids, and methods of making and identifying dsRNA having improved stability, and of using the dsRNA to inhibit the expression or function of a target gene.
    Type: Application
    Filed: March 2, 2011
    Publication date: October 6, 2011
    Applicant: ALNYLAM PHARMACEUTICALS, INC.
    Inventors: Hans-Peter VORNLOCHER, Ingo ROEHL, Philipp HADWIGER, Tracy Stage ZIMMERMANN, Muthiah MANOHARAN, Kallanthottathil G. RAJEEV, Akin AKINC
  • Publication number: 20110201006
    Abstract: The invention relates to a method for the detection of oligonucleotides using anion exchange high performance liquid chromatography. Fluorescently labelled peptide nucleic acid oligomers, complementary to the oligonucleotide are hybridized to the oligonucleotides. Anion exchange high performance liquid chromatography is then performed and the hybridized moieties detected and quantitated.
    Type: Application
    Filed: October 6, 2009
    Publication date: August 18, 2011
    Inventors: Ingo Roehl, Markus Schuster, Stephan Seiffert
  • Publication number: 20110196016
    Abstract: The invention relates to a double-stranded ribonucleic acid (dsRNA) for inhibiting the expression of an IKK2 gene. The invention also relates to a pharmaceutical composition comprising the dsRNA or nucleic acid molecules or vectors encoding the same together with a pharmaceutically acceptable carrier; methods for treating diseases caused by the expression of an IKK2 gene using said pharmaceutical composition; and methods for inhibiting the expression of IKK2 in a cell.
    Type: Application
    Filed: February 1, 2011
    Publication date: August 11, 2011
    Inventors: Anke Geick, Markus Hossbach, Grace Ju, Ingo Roehl
  • Publication number: 20110152349
    Abstract: The invention relates to a double-stranded ribonucleic acid (dsRNA) for inhibiting the expression of a IL-18 gene. The invention also relates to a pharmaceutical composition comprising the dsRNA or nucleic acid molecules or vectors encoding the same together with a pharmaceutically acceptable carrier; methods for treating diseases caused by the expression of a IL-18 gene using said pharmaceutical composition; and methods for inhibiting the expression of IL-18 in a cell.
    Type: Application
    Filed: December 14, 2010
    Publication date: June 23, 2011
    Inventors: Anke Geick, Markus Hossbach, Grace Ju, Ingo Roehl
  • Publication number: 20110124711
    Abstract: The invention relates to a double-stranded ribonucleic acid (dsRNA) for inhibiting the expression of the Nav1.8 gene (Nav1.8 gene), comprising an antisense strand having a nucleotide sequence which is less that 25 nucleotides in length and which is substantially complementary to at least a part of the Nav1.8 gene. The invention also relates to a pharmaceutical composition comprising the dsRNA together with a pharmaceutically acceptable carrier; methods for treating diseases caused by the expression of the Nav1.8 gene using the pharmaceutical composition; and methods for inhibiting the expression of the Nav1.8 gene in a cell.
    Type: Application
    Filed: January 28, 2011
    Publication date: May 26, 2011
    Applicant: ALNYLAM PHARMACEUTICALS, INC.
    Inventors: Dinah Sah, Maria Frank-Kamenetsky, Anke Geick, Philipp Hadwiger, Ingo Roehl, Pamela Tan, Hans-Peter Vornlocher
  • Publication number: 20110112176
    Abstract: The invention relates to a double-stranded ribonucleic acid (dsRNA) for inhibiting the expression of a KIF10 gene. The invention also relates to a pharmaceutical composition comprising the dsRNA or nucleic acid molecules or vectors encoding the same together with a pharmaceutically acceptable carrier; methods for treating diseases caused by the expression of a KIF10 gene using said pharmaceutical composition; and methods for inhibiting the expression of KIF10 in a cell.
    Type: Application
    Filed: November 5, 2010
    Publication date: May 12, 2011
    Inventors: John Frederick Boylan, Birgit Bramlage, Wei He, Markus Hossbach, Ingo Roehl
  • Patent number: 7928217
    Abstract: This invention relates to modified double-stranded oligoribonucleic acid (dsRNA) having improved stability in cells and biological fluids, and methods of making and identifying dsRNA having improved stability, and of using the dsRNA to inhibit the expression or function of a target gene.
    Type: Grant
    Filed: May 27, 2005
    Date of Patent: April 19, 2011
    Assignee: Alnylam Pharmaceuticals, Inc.
    Inventors: Hans-Peter Vornlocher, Ingo Roehl, Philipp Hadwiger, Tracy Stage Zimmermann, Muthiah Manoharan, Kallanthottathil G. Rajeev, Akin Akinc
  • Patent number: 7902168
    Abstract: The invention relates to a double-stranded ribonucleic acid (dsRNA) for inhibiting the expression of the Nav1.8 gene (Nav1.8 gene), comprising an antisense strand having a nucleotide sequence which is less that 25 nucleotides in length and which is substantially complementary to at least a part of the Nav1.8 gene. The invention also relates to a pharmaceutical composition comprising the dsRNA together with a pharmaceutically acceptable carrier; methods for treating diseases caused by the expression of the Nav1.8 gene using the pharmaceutical composition; and methods for inhibiting the expression of the Nav1.8 gene gene in a cell.
    Type: Grant
    Filed: June 18, 2009
    Date of Patent: March 8, 2011
    Assignee: Alnylam Pharmaceuticals, Inc.
    Inventors: Dinah Wen-Yee Sah, Maria Frank-Kamenetsky, Anke Geick, Philipp Hadwiger, Ingo Roehl, Pamela Tan, Hans-Peter Vornlocher
  • Publication number: 20100298405
    Abstract: The invention relates to a double-stranded ribonucleic acid (dsRNA) for inhibiting the expression of the Huntingtin gene (HD gene), comprising an antisense strand having a nucleotide sequence which is less than 25 nucleotides in length and which is substantially complementary to at least a part of the HD gene. The invention also relates to a pharmaceutical composition comprising the dsRNA together with a pharmaceutically acceptable carrier; methods for treating diseases caused by the expression of the HD gene, or a mutant form thereof, using the pharmaceutical composition; and methods for inhibiting the expression of the huntingtin gene in a cell.
    Type: Application
    Filed: April 2, 2009
    Publication date: November 25, 2010
    Inventors: Dinah Wen-Yee Sah, Philipp Hadwiger, Ingo Roehl, Birgit Bramlage, Pamela Tan, Hans-Peter Vornlocher, David Bumcrot
  • Patent number: 7749978
    Abstract: The invention relates to a double-stranded ribonucleic acid (dsRNA) for inhibiting the expression of the Huntingtin gene (HD gene), comprising an antisense strand having a nucleotide sequence which is less than 25 nucleotides in length and which is substantially complementary to at least a part of the HD gene. The invention also relates to a pharmaceutical composition comprising the dsRNA together with a pharmaceutically acceptable carrier; methods for treating diseases caused by the expression of the HD gene, or a mutant form thereof, using the pharmaceutical composition; and methods for inhibiting the expression of the huntingtin gene in a cell.
    Type: Grant
    Filed: November 26, 2007
    Date of Patent: July 6, 2010
    Assignee: Alnylam Pharmaceuticals, Inc.
    Inventors: Dinah Wen-Yee Sah, Philipp Hadwiger, Ingo Roehl, Birgit Bramlage, Pamela Tan, Hans-Peter Vornlocher, David Bumcrot