Patents by Inventor Ingrid van Welie

Ingrid van Welie has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220006221
    Abstract: The invention relates to an apparatus, system and method for a direct flex cable to flex cable connection, with guides through which the said flex cables are aligned upon insertion and a pressing mechanism which in its latched state perfectly aligns corresponding guides to each other and by extension also aligns corresponding contact pads on the flex cables, and brings them into firm electrical contact.
    Type: Application
    Filed: July 3, 2020
    Publication date: January 6, 2022
    Inventors: Ingrid van Welie, Leonard Kogos
  • Patent number: 10993634
    Abstract: In an automated methodology for in vivo image-guided cell patch clamping, a cell patch clamping device is moved into position and targeted to a specific cell using automated image-guided techniques. Cell contact is determined by analyzing the temporal series of measured resistance levels at the clamping device as it is moved. The difference between successive resistance levels is compared to a threshold, which must be exceeded before cell contact is assumed. Pneumatic control methods are used to achieve gigaseal formation and cell break-in, leading to whole-cell patch clamp formation. An automated robotic system capable of performing this methodology automatically performs patch clamping in vivo, automatically locating cells through image guidance and by analyzing the temporal sequence of electrode impedance changes.
    Type: Grant
    Filed: July 6, 2017
    Date of Patent: May 4, 2021
    Assignees: Massachusetts Institute of Technology, Georgia Tech Research Corporation
    Inventors: Ho-Jun Suk, Edward S. Boyden, Ingrid van Welie, Brian Douglas Allen, Suhasa B. Kodandaramaiah, Craig R. Forest
  • Publication number: 20180028081
    Abstract: In an automated methodology for in vivo image-guided cell patch clamping, a cell patch clamping device is moved into position and targeted to a specific cell using automated image-guided techniques. Cell contact is determined by analyzing the temporal series of measured resistance levels at the clamping device as it is moved. The difference between successive resistance levels is compared to a threshold, which must be exceeded before cell contact is assumed. Pneumatic control methods are used to achieve gigaseal formation and cell break-in, leading to whole-cell patch clamp formation. An automated robotic system capable of performing this methodology automatically performs patch clamping in vivo, automatically locating cells through image guidance and by analyzing the temporal sequence of electrode impedance changes.
    Type: Application
    Filed: July 6, 2017
    Publication date: February 1, 2018
    Applicants: Massachusetts Institute of Technology, Georgia Tech Research Corporation
    Inventors: Ho-Jun Suk, Edward S. Boyden, Ingrid van Welie, Brian Douglas Allen, Suhasa B. Kodandaramaiah, Craig R. Forest