Patents by Inventor Isaho Kamata

Isaho Kamata has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9879359
    Abstract: In a silicon carbide semiconductor film forming apparatus, first to third gasses are introduced into first to third separation chambers through first to third inlets, respectively. The first and second gasses are silicon raw material including gas and carbon raw material including gas, and the third gas does not include silicon and carbon. The first and second gasses are independently supplied to growth space through first and second supply paths extending from the first and second separation chambers, respectively. The third gas is introduced through a third supply path from the third separation chamber between the first and second gasses.
    Type: Grant
    Filed: June 19, 2014
    Date of Patent: January 30, 2018
    Assignees: DENSO CORPORATION, CENTRAL RESEARCH INSTITUTE OF ELECTRIC POWER INDUSTRY, NuFlare Technology, Inc., TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hiroaki Fujibayashi, Masami Naito, Masahiko Ito, Isaho Kamata, Hidekazu Tsuchida, Hideki Ito, Ayumu Adachi, Koichi Nishikawa
  • Patent number: 9873941
    Abstract: It is an object of the present invention to provide a film-forming apparatus and a film-forming method that can prolong the lifetime of heaters used under high temperature conditions in an epitaxial growth technique. An inert gas discharge portion supplies an inert gas into the space containing the heater, gas is then discharged through the gas discharge portion without influence on the semiconductor substrate during film formation. It is therefore possible to prevent the reaction gas entering into the space containing the high-temperature heaters. This makes it possible to prevent a reaction between hydrogen gas contained in the reaction gas and SiC constituting the heaters. Therefore, it is possible to prevent carbon used as a base material of the heaters from being exposed due to the decomposition of SiC and then reacting with hydrogen gas. This makes it possible to prolong the lifetime of the heaters.
    Type: Grant
    Filed: July 29, 2015
    Date of Patent: January 23, 2018
    Assignees: NuFlare Technology, Inc., Toyota Jidosha Kabushiki Kaisha
    Inventors: Hideki Ito, Toshiro Tsumori, Kunihiko Suzuki, Hidekazu Tsuchida, Isaho Kamata, Masahiko Ito, Masami Naito, Hiroaki Fujibayashi, Ayumu Adachi, Koichi Nishikawa
  • Publication number: 20170345658
    Abstract: A method for manufacturing a SiC epitaxial wafer according to one aspect of the present invention includes separately introducing, into a reaction space for SiC epitaxial growth, a basic N-based gas composed of molecules containing an N atom within the molecular structure but having neither a double bond nor a triple bond between nitrogen atoms, and a Cl-based gas composed of molecules containing a Cl atom within the molecular structure, and mixing the N-based gas and the Cl-based gas at a temperature equal to or higher than the boiling point or sublimation temperature of a solid product generated by mixing the N-based gas and the Cl-based gas.
    Type: Application
    Filed: December 8, 2015
    Publication date: November 30, 2017
    Applicants: SHOWA DENKO K.K., Central Research Institute of Electric Power Industry
    Inventors: Keisuke FUKADA, Masahiko ITO, Isaho KAMATA, Hidekazu TSUCHIDA, Hideyuki UEHIGASHI, Hiroaki FUJIBAYASHI, Masami NAITO, Kazukuni HARA, Takahiro KOZAWA, Hirofumi AOKI
  • Patent number: 9598792
    Abstract: A film-forming apparatus and method comprising a film-forming chamber for supplying a reaction gas into, a cylindrical shaped liner provided between an inner wall of the film-forming chamber and a space for performing a film-forming process, a main-heater for heating a substrate placed inside the liner, from the bottom side, a sub-heater cluster provided between the liner and the inner wall, for heating the substrate from the top side, wherein the main-heater and the sub-heater cluster are resistive heaters, wherein the sub-heater cluster has a first sub-heater provided at the closest position to the substrate, and a second sub-heater provided above the first sub-heater, wherein the first sub-heater heats the substrate in combination with the main-heater, the second sub-heater heats the liner at a lower output than the first sub-heater, wherein each temperature of the main-heater, the first sub-heater, and the second sub-heater is individually controlled.
    Type: Grant
    Filed: June 19, 2012
    Date of Patent: March 21, 2017
    Assignees: NuFlare Technology, Inc., Central Research Institute of Electric Power Industry, Denso Corporation, Toyota Jidosha Kabushiki Kaisha
    Inventors: Kunihiko Suzuki, Hideki Ito, Naohisa Ikeya, Hidekazu Tsuchida, Isaho Kamata, Masahiko Ito, Masami Naito, Hiroaki Fujibayashi, Ayumu Adachi, Koichi Nishikawa
  • Patent number: 9570337
    Abstract: At the time of transporting a substrate into or from a space where a film formation process is performed, the space where the film formation process is performed, a space where a lower heater 16 is provided, and a space where an upper heater 19 is provided are made in an inert gas atmosphere.
    Type: Grant
    Filed: March 19, 2014
    Date of Patent: February 14, 2017
    Assignees: NuFlare Technology, Inc., Denso Corporation
    Inventors: Hideki Ito, Hidekazu Tsuchida, Isaho Kamata, Masahiko Ito, Masami Naito, Hiroaki Fujibayashi, Ayumu Adachi, Koichi Nishikawa
  • Patent number: 9518322
    Abstract: A film formation apparatus according to an embodiment includes: a film formation chamber performing film formation on a substrate; a cylindrical liner provided inside of a sidewall of the film formation chamber; a process-gas supply unit provided at a top of the film formation chamber and having a first gas ejection hole supplying a process gas to inside of the liner; a first heater provided outside the liner in the film formation chamber and heating the substrate from above; a second heater heating the substrate from below; and a shielding gas supply unit having a plurality of second gas ejection holes supplying a shielding gas to a position closer to a sidewall of the film formation chamber than a position of the first gas ejection hole.
    Type: Grant
    Filed: August 29, 2014
    Date of Patent: December 13, 2016
    Assignee: NuFlare Technology, Inc.
    Inventors: Hideki Ito, Kunihiko Suzuki, Hidekazu Tsuchida, Isaho Kamata, Masahiko Ito, Hiroaki Fujibayashi, Masami Naito, Ayumu Adachi, Koichi Nishikawa
  • Publication number: 20160138190
    Abstract: In a silicon carbide semiconductor film forming apparatus, first to third gasses are introduced into first to third separation chambers through first to third inlets, respectively. The first and second gasses are silicon raw material including gas and carbon raw material including gas, and the third gas does not include silicon and carbon. The first and second gasses are independently supplied to growth space through first and second supply paths extending from the first and second separation chambers, respectively. The third gas is introduced through a third supply path from the third separation chamber between the first and second gasses.
    Type: Application
    Filed: June 19, 2014
    Publication date: May 19, 2016
    Inventors: Hiroaki FUJIBAYASHI, Masami NAITO, Masahiko ITO, Isaho KAMATA, Hidekazu TSUCHIDA, Hideki ITO, Ayumu ADACHI, Koichi NISHIKAWA
  • Patent number: 9273412
    Abstract: A film-forming apparatus and method comprising a film-forming chamber for supplying a reaction gas into, a cylindrical shaped liner provided between an inner wall of the film-forming chamber and a space for performing a film-forming process, a main-heater for heating a substrate placed inside the liner, from the bottom side, a sub-heater cluster provided between the liner and the inner wall, for heating the substrate from the top side, wherein the main-heater and the sub-heater cluster are resistive heaters, wherein the sub-heater cluster has a first sub-heater provided at the closest position to the substrate, and a second sub-heater provided above the first sub-heater, wherein the first sub-heater heats the substrate in combination with the main-heater, the second sub-heater heats the liner at a lower output than the first sub-heater, wherein each temperature of the main-heater, the first sub-heater, and the second sub-heater is individually controlled.
    Type: Grant
    Filed: June 19, 2012
    Date of Patent: March 1, 2016
    Assignees: NuFlare Technology, Inc., Central Research Institute of Electric Power Industry, Denso Corporation, Toyota Jidosha Kabushiki Kaisha
    Inventors: Kunihiko Suzuki, Hideki Ito, Naohisa Ikeya, Hidekazu Tsuchida, Isaho Kamata, Masahiko Ito, Masami Naito, Hiroaki Fujibayashi, Ayumu Adachi, Koichi Nishikawa
  • Publication number: 20160024652
    Abstract: A film forming apparatus according to an embodiment of the invention includes: a film forming chamber configured to form a film on a substrate; a susceptor configured to place the substrate thereon; a rotating part configured to rotate the susceptor; a heater configured to heat the substrate; and a gas supplier configured to supply process gases into the film forming chamber, wherein the susceptor includes: a ring-shaped outer circumferential susceptor supported by the rotating part; a holder provided at an inner circumferential portion of the outer circumferential susceptor, the holder configured to hold the substrate; a ring-shaped plate provided over the outer circumferential susceptor; and a cover member configured to cover a top surface and an outer circumferential surface of the plate and an outer circumferential surface of the outer circumferential susceptor.
    Type: Application
    Filed: July 10, 2015
    Publication date: January 28, 2016
    Inventors: Hideki Ito, Hidekazu Tsuchida, Isaho Kamata, Masahiko Ito, Masami Naito, Hiroaki Fujibayashi, Katsumi Suzuki, Koichi Nishikawa
  • Publication number: 20150376813
    Abstract: When growing a hexagonal single crystal, an off angle is set, in a first direction [11-20] with respect to a basal plane {0001} serving as a main crystal growth plane, in a hexagonal single crystal for use as a foundation in performing crystal growth; and a cross-sectional shape which is decreased in crystal thickness in a stair-step manner from a reference line AA? parallel to the first direction [11-20] toward second directions [?1100], [1-100] on both sides of the reference line and orthogonal to the first direction [11-20]. Dislocations threading in a c-axis direction, contained in the hexagonal single crystal, are converted into defects inclined ?40° from the c-axis direction toward the basal plane during crystal growth, and the direction of propagation of the defects is controlled to a direction between a direction [?1-120] opposite to the first direction [11-20] and the second directions [?1100], [1-100], to discharge defects.
    Type: Application
    Filed: January 31, 2014
    Publication date: December 31, 2015
    Applicant: CENTRAL RESEARCH INSTITUTE OF ELECTRIC POWER INDUSTRY
    Inventors: Hidekazu TSUCHIDA, Isaho KAMATA, Norihiro HOSHINO
  • Publication number: 20150329967
    Abstract: It is an object of the present invention to provide a film-forming apparatus and a film-forming method that can prolong the lifetime of heaters used under high temperature conditions in an epitaxial growth technique. An inert gas discharge portion supplies an inert gas into the space containing the heater, gas is then discharged through the gas discharge portion without influence on the semiconductor substrate during film formation. It is therefore possible to prevent the reaction gas entering into the space containing the high-temperature heaters. This makes it possible to prevent a reaction between hydrogen gas contained in the reaction gas and SiC constituting the heaters. Therefore, it is possible to prevent carbon used as a base material of the heaters from being exposed due to the decomposition of SiC and then reacting with hydrogen gas. This makes it possible to prolong the lifetime of the heaters.
    Type: Application
    Filed: July 29, 2015
    Publication date: November 19, 2015
    Inventors: Hideki ITO, Toshiro TSUMORI, Kunihiko SUZUKI, Hidekazu TSUCHIDA, Isaho KAMATA, Masahiko ITO, Masami NAITO, Hiroaki FUJIBAYASHI, Ayumu ADACHI, Koichi NISHIKAWA
  • Publication number: 20150299898
    Abstract: A susceptor processing method according to an embodiment includes: placing a plate on a susceptor arranged in a film forming chamber; heating the susceptor in order to have a temperature higher than that of the plate by using a main heater arranged below the susceptor and an auxiliary heater arranged in an upper part of the film forming chamber, and subliming a SIC film having been formed on a surface of the susceptor and adhering the sublimed SIC on the plate; and transporting the plate from the film forming chamber, the plate having SIC adhered thereon.
    Type: Application
    Filed: April 2, 2015
    Publication date: October 22, 2015
    Inventors: Hideki ITO, Hidekazu Tsuchida, Isaho Kamata, Masahiko Ito, Hiroaki Fujibayashi, Katsumi Suzuki, Koichi Nishikawa
  • Publication number: 20150090693
    Abstract: A film formation apparatus according to an embodiment includes: a film formation chamber performing film formation on a substrate; a cylindrical liner provided inside of a sidewall of the film formation chamber; a process-gas supply unit provided at a top of the film formation chamber and having a first gas ejection hole supplying a process gas to inside of the liner; a first heater provided outside the liner in the film formation chamber and heating the substrate from above; a second heater heating the substrate from below; and a shielding gas supply unit having a plurality of second gas ejection holes supplying a shielding gas to a position closer to a sidewall of the film formation chamber than a position of the first gas ejection hole.
    Type: Application
    Filed: August 29, 2014
    Publication date: April 2, 2015
    Inventors: Hideki ITO, Kunihiko SUZUKI, Hidekazu TSUCHIDA, Isaho KAMATA, Masahiko ITO, Hiroaki FUJIBAYASHI, Masami NAITO, Ayumu ADACHI, Koichi NISHIKAWA
  • Publication number: 20140287539
    Abstract: At the time of transporting a substrate into or from a space where a film formation process is performed, the space where the film formation process is performed, a space where a lower heater 16 is provided, and a space where an upper heater 19 is provided are made in an inert gas atmosphere.
    Type: Application
    Filed: March 19, 2014
    Publication date: September 25, 2014
    Inventors: Hideki ITO, Hidekazu Tsuchida, Isaho Kamata, Masahiko Ito, Masami Naito, Hiroaki Fujibayashi, Ayumu Adachi, Koichi Nishikawa
  • Patent number: 8815711
    Abstract: A manufacturing apparatus for a semiconductor device, including: a reaction chamber configured to perform film formation on a wafer; a process gas supplying mechanism provided in an upper part of the reaction chamber and configured to introduce process gas to an interior of the reaction chamber; a gas discharging mechanism provided in a lower part of the reaction chamber and configured to discharge gas from the reaction chamber; a supporting member configured to hold the wafer; a cleaning gas supplying mechanism provided in an outer periphery of the supporting member and configured to emit cleaning gas in an outer periphery direction below an upper end of the supporting member; a heater configured to heat the wafer; and a rotary driving mechanism configured to rotate the wafer.
    Type: Grant
    Filed: June 14, 2011
    Date of Patent: August 26, 2014
    Assignees: NuFlare Technology, Inc., Denso Corporation, Toyota Jidosha Kabushiki Kaisha
    Inventors: Kunihiko Suzuki, Hideki Ito, Hidekazu Tsuchida, Isaho Kamata, Masahiko Ito
  • Patent number: 8716718
    Abstract: An epitaxial SiC single crystal substrate including a SiC single crystal wafer whose main surface is a c-plane or a surface that inclines a c-plane with an angle of inclination that is more than 0 degree but less than 10 degrees, and SiC epitaxial film that is formed on the main surface of the SiC single crystal wafer, wherein the dislocation array density of threading edge dislocation arrays that are formed in the SiC epitaxial film is 10 arrays/cm2 or less.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: May 6, 2014
    Assignees: Showa Denko K.K., National Institute of Advanced Industrial Science and Technology, Central Research Institute of Electric Power Industry
    Inventors: Kenji Momose, Michiya Odawara, Keiichi Matsuzawa, Hajime Okumura, Kazutoshi Kojima, Yuuki Ishida, Hidekazu Tsuchida, Isaho Kamata
  • Publication number: 20130247816
    Abstract: A film-forming apparatus and method for the formation of silicon carbide comprising, a film-forming chamber to which a reaction gas is supplied, a temperature-measuring unit which measures a temperature within the chamber, a plurality of heating units arranged inside the chamber, an output control unit which independently controls outputs of the plurality of heating units, a substrate-transferring unit which transfers a substrate into, and out of the chamber, wherein the output control unit turns off or lowers at least one output of the plurality of heating units when the film forming process is completed, when the temperature measured by the temperature-measuring unit reaches a temperature at which the substrate-transferring unit is operable within the chamber, then at least one output of the plurality of heating units turned off or lowered, is turned on or raised, and the substrate is transferred out of the film-forming chamber by the substrate-transferring unit.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 26, 2013
    Applicants: Denso Corporation, NuFlare Technology, Inc.
    Inventors: Kunihiko SUZUKI, Yuusuke Sato, Hideki Ito, Hidekazu Tsuchida, Isaho Kamata, Masahiko Ito, Masami Naito
  • Patent number: 8455269
    Abstract: In a bipolar semiconductor device such that electrons and holes are recombined in a silicon carbide epitaxial film grown from the surface of a silicon carbide single crystal substrate at the time of on-state forward bias operation; an on-state forward voltage increased in a silicon carbide bipolar semiconductor device is recovered by shrinking the stacking fault area enlarged by on-state forward bias operation. In a method of this invention, the bipolar semiconductor device in which the stacking fault area enlarged and the on-state forward voltage has been increased by on-state forward bias operation, is heated at a temperature of higher than 350° C.
    Type: Grant
    Filed: August 4, 2006
    Date of Patent: June 4, 2013
    Assignee: Central Research Institute of Electric Power Industry
    Inventors: Toshiyuki Miyanagi, Hidekazu Tsuchida, Isaho Kamata, Yoshitaka Sugawara, Koji Nakayama, Ryosuke Ishii
  • Patent number: 8367510
    Abstract: In a bipolar silicon carbide semiconductor device in which an electron and a hole recombine with each other during current passage within a silicon carbide epitaxial film grown from a surface of a silicon carbide single crystal substrate, an object described herein is the reduction of defects which are the nuclei of a stacking fault which is expanded by current passage, thereby suppressing the increase of the forward voltage of the bipolar silicon carbide semiconductor device. In a method for producing a bipolar silicon carbide semiconductor device, the device is subjected to a thermal treatment at a temperature of 300° C. or higher in the final step of production. Preferably, the above-mentioned thermal treatment is carried out after the formation of electrodes and then the resulting bipolar silicon carbide semiconductor device is mounted in a package.
    Type: Grant
    Filed: September 1, 2006
    Date of Patent: February 5, 2013
    Assignee: Central Research Institute of Electric Power Industry
    Inventors: Toshiyuki Miyanagi, Hidekazu Tsuchida, Isaho Kamata, Masahiro Nagano, Yoshitaka Sugawara, Koji Nakayama, Ryosuke Ishii
  • Publication number: 20130009170
    Abstract: An epitaxial SiC single crystal substrate including a SiC single crystal wafer whose main surface is a c-plane or a surface that inclines a c-plane with an angle of inclination that is more than 0 degree but less than 10 degrees, and SiC epitaxial film that is formed on the main surface of the SiC single crystal wafer, wherein the dislocation array density of threading edge dislocation arrays that are formed in the SiC epitaxial film is 10 arrays/cm2 or less.
    Type: Application
    Filed: September 14, 2012
    Publication date: January 10, 2013
    Applicants: SHOWA DENKO K.K., CENTRAL RESEARCH INSTITUTE OF ELECTRIC POWER INDUSTRY, NATIONAL INSTITUTE OF ADVANCE INDUSTRIAL SCIENCE AND TECHNOLOGY
    Inventors: Kenji MOMOSE, Michiya ODAWARA, Keiichi MATSUZAWA, Hajime OKUMURA, Kazutoshi KOJIMA, Yuuki ISHIDA, Hidekazu TSUCHIDA, Isaho KAMATA