Patents by Inventor Itsumi Matsuoka

Itsumi Matsuoka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210254193
    Abstract: A method for recovering scandium, by which scandium is able to be recovered from nickel oxide ore. The present invention comprises: a leaching step S1 for obtaining a leachate by leaching a nickel oxide ore containing scandium with use of sulfuric acid; a neutralization step by adding a neutralizing agent thereto; a sulfurization step by adding a sulfurizing agent to the post-neutralization solution; an ion exchange step by bringing the post-sulfurization solution into contact with a chelating resin; a dissolution step by obtaining a precipitate of scandium hydroxide by adding an alkali into the scandium eluent, and subsequently adding an acid solution to the scandium hydroxide; a solvent extraction step by bringing the scandium acid dissolution liquid into contact with a neutral extractant; and a scandium recovery step by adding oxalic acid to the extraction residue and subsequently roasting the salt of scandium oxalate.
    Type: Application
    Filed: February 21, 2017
    Publication date: August 19, 2021
    Inventors: Hidemasa Nagai, Keiji Kudo, Itsumi Matsuoka, Yoshitomo Ozaki, Hirofumi Shoji, Shin-ya Matsumoto, Tatsuya Higaki
  • Publication number: 20210230755
    Abstract: A method for manufacturing a sulfuric acid solution includes supplying a chloride ion-containing sulfuric acid solution as an initial electrolyte in an electrolyzer inside of which is divided into an anode chamber and a cathode chamber by a diaphragm; and subsequently taking out a metal dissolved electrolyte in which a metal constituting the anode is dissolved from the anode chamber while supplying a current to an anode and a cathode disposed in the electrolyzer.
    Type: Application
    Filed: April 19, 2019
    Publication date: July 29, 2021
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventors: Hiroto WATANABE, Itsumi MATSUOKA, Yusuke SENBA, Hiroshi KOBAYASHI
  • Patent number: 10704120
    Abstract: The present invention provides a method for easy and efficient recovery of high purity scandium from nickel oxide ore, the method comprising: an adsorption step for passing a scandium-containing solution through an ion exchange resin to adsorb scandium on the ion exchange resin; an elution step for eluting scandium from the ion exchange resin to obtain a post-elution solution; an impurity extraction step in which after the elution step, the scandium-containing solution is subjected to a first solvent extraction using an amine-based impurity extractant and is separated into a first aqueous phase containing scandium and into a first organic phase containing impurities; and a scandium extraction step in which the first aqueous phase is subjected to a second solvent extraction using an amide derivative-containing scandium extractant to obtain a second organic phase containing scandium.
    Type: Grant
    Filed: January 31, 2017
    Date of Patent: July 7, 2020
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Itsumi Matsuoka, Hiroshi Kobayashi, Yusuke Senba
  • Patent number: 10697043
    Abstract: In separating scandium and thorium from a leachate obtained by adding sulfuric acid to a nickel oxide ore containing scandium and thorium, scandium is recovered from only one system. The method according to the invention comprises: an extraction step S1 for treating a nickel oxide ore containing scandium and thorium with sulfuric acid to give an acidic solution (a feed solution for extraction), and then solvent-extracting the feed solution with the use of a scandium extractant containing an amide derivative to thereby divide the feed solution into an organic extract (a first organic phase) containing scandium and thorium and a liquid extract (a first aqueous phase) containing impurities; and a washing step S2 for adding sulfuric acid to the organic extract (the first organic phase) and thus dividing the same into washed organic matters (a second organic phase) containing thorium and a washed liquid (a second aqueous phase) containing scandium.
    Type: Grant
    Filed: March 1, 2017
    Date of Patent: June 30, 2020
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Yusuke Senba, Itsumi Matsuoka, Hiroshi Kobayashi
  • Publication number: 20190233960
    Abstract: Provided are a metal electrodeposition cathode plate, the non-conductive film of which is not susceptible to failure and which can be used repeatedly, and a production method therefor. This cathode plate comprises a metal plate on which multiple disc-shaped protrusions are disposed, and a non-conductive film formed on the non-protrusion flat areas of the metal plate. The minimum film thickness Y of the non-conductive film at positions between the centers of adjacent protrusions is the same or greater than the height X of the protrusions. It is preferred that the height X of the protrusions is 50 ?m to 1000 ?m.
    Type: Application
    Filed: July 10, 2017
    Publication date: August 1, 2019
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventors: Hiroto Watanabe, Itsumi Matsuoka, Yusuke Senba, Hiroshi Kobayashi
  • Publication number: 20190185964
    Abstract: Provided is a method for efficiently purifying scandium by separating scandium and impurities from an acidic solution which contains scandium and impurities that include iron. A method for purifying scandium according to the present invention subjects an acidic solution, which contains an element component including at least ion, while containing scandium, to solvent extraction by means of a mixed extractant containing a phosphoric acid-based extractant and a neutral extractant, thereby extracting scandium from the acidic solution. It is preferable that the phosphoric acid-based extractant is contained in the mixed extractant at a mixing molar ratio within the range of from 5% to 50% (inclusive). It is also preferable that the pH of the acidic solution is adjusted to a value within the range of from 0.0 to 2.0 (inclusive) before the solvent extraction.
    Type: Application
    Filed: August 21, 2017
    Publication date: June 20, 2019
    Inventors: Masahiro Goto, Fukiko Kubota, Itsumi Matsuoka, Satoshi Asano, Hiroshi Kobayashi
  • Publication number: 20190062869
    Abstract: In separating scandium and thorium from a leachate obtained by adding sulfuric acid to a nickel oxide ore containing scandium and thorium, scandium is recovered from only one system. The method according to the invention comprises: an extraction step S1 for treating a nickel oxide ore containing scandium and thorium with sulfuric acid to give an acidic solution (a feed solution for extraction), and then solvent-extracting the feed solution with the use of a scandium extractant containing an amide derivative to thereby divide the feed solution into an organic extract (a first organic phase) containing scandium and thorium and a liquid extract (a first aqueous phase) containing impurities; and a washing step S2 for adding sulfuric acid to the organic extract (the first organic phase) and thus dividing the same into washed organic matters (a second organic phase) containing thorium and a washed liquid (a second aqueous phase) containing scandium.
    Type: Application
    Filed: March 1, 2017
    Publication date: February 28, 2019
    Inventors: Yusuke Senba, Itsumi Matsuoka, Hiroshi Kobayashi
  • Publication number: 20190040492
    Abstract: The present invention provides a method for easy and efficient recovery of high purity scandium from nickel oxide ore, the method comprising: an adsorption step for passing a scandium-containing solution through an ion exchange resin to adsorb scandium on the ion exchange resin; an elution step for eluting scandium from the ion exchange resin to obtain a post-elution solution; an impurity extraction step in which after the elution step, the scandium-containing solution is subjected to a first solvent extraction using an amine-based impurity extractant and is separated into a first aqueous phase containing scandium and into a first organic phase containing impurities; and a scandium extraction step in which the first aqueous phase is subjected to a second solvent extraction using an amide derivative-containing scandium extractant to obtain a second organic phase containing scandium.
    Type: Application
    Filed: January 31, 2017
    Publication date: February 7, 2019
    Inventors: Itsumi Matsuoka, Hiroshi Kobayashi, Yusuke Senba
  • Patent number: 10081851
    Abstract: Provided is a method for recovering scandium, with which it is possible to easily and efficiently recover high-purity scandium from nickel oxide ores. This method for recovering scandium involves passing a solution containing scandium through an ion exchange resin, then subjecting the eluant eluted from the ion exchange resin to solvent extraction and separating the extraction residual liquid and the extraction agent after extraction, then performing an oxalation process on the extraction residual liquid to obtain a scandium oxalate precipitate, and roasting the precipitate to obtain scandium oxide, wherein the method is characterized in that an amine-based extraction agent is used as the extraction agent for solvent extraction.
    Type: Grant
    Filed: November 25, 2015
    Date of Patent: September 25, 2018
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Itsumi Matsuoka, Hidemasa Nagai, Keiji Kudo, Shin-ya Matsumoto, Tatsuya Higaki, Yoshitomo Ozaki, Hirofumi Shouji, Hiroshi Kobayashi
  • Patent number: 9963762
    Abstract: In order to recover high-quality scandium from nickel oxide ores efficiently, this method comprises: a step (S1) for feeding Ni oxide ores and sulfuric acid into a pressure vessel, and subjecting the mixture to solid-liquid separation to form a leachate and a leach residue; a step (S2) for adding a neutralizing agent to the leachate, and thus forming a neutralization sediment and a post-neutralization fluid; a step (S3) for adding a sulfurizing agent to the post-neutralization fluid, and separating the obtained mixture into Ni sulfide and a post-sulfurization fluid; a step (S4) for bringing the post-sulfurization fluid into contact with a chelating resin, making Sc adsorbed on the chelating resin, and forming an Sc eluent; a step (S6) for bringing the Sc eluent into contact with an extracting agent, adding a back-extraction agent to the extract, and forming back-extracted matter; and a step (S8) for roasting the back-extracted matter, and forming Sc oxide.
    Type: Grant
    Filed: January 21, 2015
    Date of Patent: May 8, 2018
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Tatsuya Higaki, Yoshitomo Ozaki, Shin-ya Matsumoto, Itsumi Matsuoka, Hidemasa Nagai, Toshihiko Nagakura, Keiji Kudo
  • Publication number: 20170321301
    Abstract: Provided is a method for recovering scandium, with which it is possible to easily and efficiently recover high-purity scandium from nickel oxide ores. This method for recovering scandium involves passing a solution containing scandium through an ion exchange resin, then subjecting the eluant eluted from the ion exchange resin to solvent extraction and separating the extraction residual liquid and the extraction agent after extraction, then performing an oxalation process on the extraction residual liquid to obtain a scandium oxalate precipitate, and roasting the precipitate to obtain scandium oxide, wherein the method is characterized in that an amine-based extraction agent is used as the extraction agent for solvent extraction.
    Type: Application
    Filed: November 25, 2015
    Publication date: November 9, 2017
    Inventors: Itsumi Matsuoka, Hidemasa Nagai, Keiji Kudo, Shin-ya Matsumoto, Tatsuya Higaki, Yoshitomo Ozaki, Hirofumi Shouji, Hiroshi Kobayashi
  • Publication number: 20160340757
    Abstract: In order to recover high-quality scandium from nickel oxide ores efficiently, this method comprises: a step (S1) for feeding Ni oxide ores and sulfuric acid into a pressure vessel, and subjecting the mixture to solid-liquid separation to form a leachate and a leach residue; a step (S2) for adding a neutralizing agent to the leachate, and thus forming a neutralization sediment and a post-neutralization fluid; a step (S3) for adding a sulfurizing agent to the post-neutralization fluid, and separating the obtained mixture into Ni sulfide and a post-sulfurization fluid; a step (S4) for bringing the post-sulfurization fluid into contact with a chelating resin, making Sc adsorbed on the chelating resin, and forming an Sc eluent; a step (S6) for bringing the Sc eluent into contact with an extracting agent, adding a back-extraction agent to the extract, and forming back-extracted matter; and a step (S8) for roasting the back-extracted matter, and forming Sc oxide.
    Type: Application
    Filed: January 21, 2015
    Publication date: November 24, 2016
    Inventors: Tatsuya Higaki, Yoshitomo Ozaki, Shin-ya Matsumoto, Itsumi Matsuoka, Hidemasa Nagai, Toshihiko Nagakura, Keiji Kudo