Patents by Inventor J. Craig Venter

J. Craig Venter has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9481880
    Abstract: The presently disclosed invention relates to methods of installing a genome isolated from one species (the donor) into suitably prepared cells of a second species (the recipient). Introduction of the donor genetic material into the recipient host cell effectively converts the recipient host cell into a new cell that, as a result of the operation of the donated genetic material, is functionally classified as belonging to the genus and species of the donor genetic material.
    Type: Grant
    Filed: May 1, 2008
    Date of Patent: November 1, 2016
    Assignee: Synthetic Genomics, Inc.
    Inventors: John I. Glass, Nina Alperovich, Clyde A. Hutchison, III, Carole Lartigue, Charles E. Merryman, Sanjay Vashee, J. Craig Venter
  • Patent number: 9434974
    Abstract: A method is provided for introducing a genome into a cell or cell-like system. The introduced genome may occur in nature, be manmade with or without automation, or may be a hybrid of naturally occurring and manmade materials. The genome is obtained outside of a cell with minimal damage. Materials such as a proteins, RNAs, polycations, nucleoid condensation proteins, or gene translation systems may accompany the genome. The genome is installed into a naturally occurring cell or into a manmade cell-like system. A cell-like system or synthetic cell resulting from the practice of the provided method may be designed and used to yield gene-expression products, such as desired proteins. By enabling the synthesis of cells or cell-like systems comprising a wide variety of genomes, accompanying materials and membrane types, the provided method makes possible a broader field of experimentation and bioengineering than has been available using prior art methods.
    Type: Grant
    Filed: December 22, 2006
    Date of Patent: September 6, 2016
    Assignee: Synthetic Genomics, Inc.
    Inventors: John I. Glass, Lei Young, Carole Lartigue, Nacyra Assad-Garcia, Hamilton O. Smith, Clyde A. Hutchison, J. Craig Venter
  • Publication number: 20160177322
    Abstract: Compositions and methods are disclosed herein for cloning a synthetic or a semi-synthetic donor genome in a heterologous host cell. In one embodiment, the donor genome can be further modified within a host cell. Modified or unmodified genomes can be further isolated from the host cell and transferred to a recipient cell. Methods disclosed herein can be used to alter donor genomes from intractable donor cells in more tractable host cells.
    Type: Application
    Filed: February 23, 2016
    Publication date: June 23, 2016
    Inventors: Gwynedd A. Benders, John I. Glass, Clyde A. Hutchison, III, Carole Lartigue, Sanjay Vashee, Mikkel A. Algire, Hamilton O. Smith, Charles E. Merryman, Vladimir N. Noskov, Ray-Yuan Chuang, Daniel G. Gibson, J. Craig Venter
  • Publication number: 20160177338
    Abstract: Compositions and methods are disclosed herein for cloning a donor genome in a heterologous host cell. In one embodiment, the donor genome can be further modified within a host cell. Modified or unmodified genomes can be further isolated from the host cell and transferred to a recipient cell. Methods disclosed herein can be used to alter donor genomes from intractable donor cells in more tractable host cells.
    Type: Application
    Filed: February 29, 2016
    Publication date: June 23, 2016
    Inventors: Gwynedd A. Benders, John I. Glass, Clyde A. Hutchison, III, Carole Lartigue, Sanjay Vashee, Mikkel A. Algire, Hamilton O. Smith, Charles E. Merryman, Vladimir N. Noskov, Ray-Yuan Chuang, Daniel G. Gibson, J. Craig Venter
  • Patent number: 9273310
    Abstract: Compositions and methods are disclosed herein for cloning a donor genome in a heterologous host cell. In one embodiment, the donor genome can be further modified within a host cell. Modified or unmodified genomes can be further isolated from the host cell and transferred to a recipient cell. Methods disclosed herein can be used to alter donor genomes from intractable donor cells in more tractable host cells.
    Type: Grant
    Filed: March 5, 2010
    Date of Patent: March 1, 2016
    Assignee: Synthetic Genomics, Inc.
    Inventors: Gwynedd A. Benders, John I. Glass, Clyde A. Hutchison, III, Carole Lartigue, Sanjay Vashee, Mikkel A. Algire, Hamilton O. Smith, Charles E. Merryman, Vladimir N. Noskov, Ray-Yuan Chuang, Daniel G. Gibson, J. Craig Venter
  • Patent number: 9266929
    Abstract: The invention provides proteins from Neisseria meningitidis, including the amino acid sequences and the corresponding nucleotide sequences. The proteins are predicted to be useful antigens for vaccines and/or diagnostics.
    Type: Grant
    Filed: August 1, 2014
    Date of Patent: February 23, 2016
    Assignee: GlaxoSmithKline Biologicals SA
    Inventors: Claire Fraser, Cesira Galeotti, Guido Grandi, Erin Hickey, Vega Masignani, Marirosa Mora, Jeremy Petersen, Mariagrazia Pizza, Rino Rappuoli, Giulio Ratti, Vincenzo Scarlato, Maria Scarselli, Herve Tettelin, J. Craig Venter
  • Patent number: 9267132
    Abstract: Compositions and methods are disclosed herein for cloning a synthetic or a semi-synthetic donor genome in a heterologous host cell. In one embodiment, the donor genome can be further modified within a host cell. Modified or unmodified genomes can be further isolated from the host cell and transferred to a recipient cell. Methods disclosed herein can be used to alter donor genomes from intractable donor cells in more tractable host cells.
    Type: Grant
    Filed: May 19, 2010
    Date of Patent: February 23, 2016
    Assignee: Synthetic Genomics, Inc.
    Inventors: Gwynedd A. Benders, John I. Glass, Clyde A. Hutchison, Carole Lartigue, Sanjay Vashee, Mikkel A. Algire, Hamilton O. Smith, Charles E. Merryman, Vladimir N. Noskov, Ray-Yuan Chuang, Daniel G. Gibson, J. Craig Venter
  • Publication number: 20160030545
    Abstract: The invention provides proteins from Neisseria meningitidis, including the amino acid sequences and the corresponding nucleotide sequences. The proteins are predicted to be useful antigens for vaccines and/or diagnostics.
    Type: Application
    Filed: July 21, 2015
    Publication date: February 4, 2016
    Applicant: GLAXOSMITHKLINE BIOLOGICALS SA
    Inventors: Claire FRASER, Cesira GALEOTTI, Guido GRANDI, Erin HICKEY, Vega MASIGNANI, Marirosa MORA, Jeremy PETERSEN, Mariagrazia PIZZA, Rino RAPPUOLI, Giulio RATTI, Vincenzo SCARLATO, Maria SCARSELLI, Herve TETTELIN, J. Craig VENTER
  • Patent number: 9249196
    Abstract: The invention provides proteins from Neisseria meningitidis, including the amino acid sequences and the corresponding nucleotide sequences. The proteins are predicted to be useful antigens for vaccines and/or diagnostics.
    Type: Grant
    Filed: January 26, 2012
    Date of Patent: February 2, 2016
    Assignee: GlaxoSmithKline Biologicals SA
    Inventors: Claire Fraser, Cesira Galeotti, Guido Grandi, Erin Hickey, Vega Masignani, Marirosa Mora, Jeremy Petersen, Mariagrazia Pizza, Rino Rappuoli, Giulio Ratti, Vincenzo Scarlato, Maria Scarselli, Herve Tettelin, J. Craig Venter
  • Patent number: 9249198
    Abstract: The invention provides proteins from Neisseria meningitidis, including the amino acid sequences and the corresponding nucleotide sequences. The proteins are predicted to be useful antigens for vaccines and/or diagnostics.
    Type: Grant
    Filed: August 1, 2014
    Date of Patent: February 2, 2016
    Assignee: GlaxoSmithKline Biologicals SA
    Inventors: Claire Fraser, Cesira Galeotti, Guido Grandi, Erin Hickey, Vega Masignani, Marirosa Mora, Jeremy Petersen, Mariagrazia Pizza, Rino Rappuoli, Giulio Ratti, Vincenzo Scarlato, Maria Scarselli, Herve Tettelin, J. Craig Venter
  • Patent number: 9139621
    Abstract: The invention provides proteins from Neisseria meningitidis, including the amino acid sequences and the corresponding nucleotide sequences. The proteins are predicted to be useful antigens for vaccines and/or diagnostics.
    Type: Grant
    Filed: March 23, 2011
    Date of Patent: September 22, 2015
    Assignee: GlaxoSmithKline Biologicals SA
    Inventors: Claire Fraser, Cesira Galeotti, Guido Grandi, Erin Hickey, Vega Masignani, Marirosa Mora, Jeremy Petersen, Mariagrazia Pizza, Rino Rappuoli, Giulio Ratti, Vincenzo Scarlato, Maria Scarselli, Herve Tettelin, J. Craig Venter
  • Publication number: 20150240280
    Abstract: The present invention relates to methods of joining two or more double-stranded (ds) or single-stranded (ss) DNA molecules of interest in vitro, wherein the distal region of the first DNA molecule and the proximal region of the second DNA molecule of each pair share a region of sequence identity. The method allows the joining of a large number of DNA fragments, in a predetermined order and orientation, without the use of restriction enzymes. It can be used, e.g., to join synthetically produced sub-fragments of a gene or genome of interest. Kits for performing the method are also disclosed. The methods of joining DNA molecules may be used to generate combinatorial libraries useful to generate, for example, optimal protein expression through codon optimization, gene optimization, and pathway optimization.
    Type: Application
    Filed: March 2, 2015
    Publication date: August 27, 2015
    Inventors: Daniel G. Gibson, Hamilton O. Smith, Clyde A. Hutchison, Lei Young, J. Craig Venter
  • Publication number: 20150086582
    Abstract: The invention provides proteins from Neisseria meningitidis, including the amino acid sequences and the corresponding nucleotide sequences. The proteins are predicted to be useful antigens for vaccines and/or diagnostics.
    Type: Application
    Filed: August 1, 2014
    Publication date: March 26, 2015
    Inventors: Claire FRASER, Cesira GALEOTTI, Guido GRANDI, Erin HICKEY, Vega MASIGNANI, Marirosa MORA, Jeremy PETERSEN, Mariagrazia PIZZA, Rino RAPPUOLI, Giulio RATTI, Vincenzo SCARLATO, Maria SCARSELLI, Herve TETTELIN, J. Craig VENTER
  • Publication number: 20150079124
    Abstract: The invention provides proteins from Neisseria meningitidis, including the amino acid sequences and the corresponding nucleotide sequences. The proteins are predicted to be useful antigens for vaccines and/or diagnostics.
    Type: Application
    Filed: August 1, 2014
    Publication date: March 19, 2015
    Inventors: Claire FRASER, Cesira GALEOTTI, Guido GRANDI, Erin HICKEY, Vega MASIGNANI, Marirosa MORA, Jeremy PETERSEN, Mariagrazia PIZZA, Rino RAPPUOLI, Giulio RATTI, Vincenzo SCARLATO, Maria SCARSELLI, Herve TETTELIN, J. Craig VENTER
  • Patent number: 8968999
    Abstract: The present invention relates to methods of joining two or more double-stranded (ds) or single-stranded (ss) DNA molecules of interest in vitro, wherein the distal region of the first DNA molecule and the proximal region of the second DNA molecule of each pair share a region of sequence identity. The method allows the joining of a large number of DNA fragments, in a predetermined order and orientation, without the use of restriction enzymes. It can be used, e.g., to join synthetically produced sub-fragments of a gene or genome of interest. Kits for performing the method are also disclosed. The methods of joining DNA molecules may be used to generate combinatorial libraries useful to generate, for example, optimal protein expression through codon optimization, gene optimization, and pathway optimization.
    Type: Grant
    Filed: February 13, 2009
    Date of Patent: March 3, 2015
    Assignee: Synthetic Genomics, Inc.
    Inventors: Daniel G. Gibson, Hamilton O. Smith, Clyde A. Hutchison, Lei Young, J. Craig Venter
  • Publication number: 20140274808
    Abstract: The present invention provides a system for receiving biological sequence information and activating the synthesis of a biological entity. The system has a receiving unit for receiving a signal encoding biological sequence information transmitted from a transmitting unit. The transmitting unit can be present at a remote location from the receiving unit. The system also has an assembly unit connected to the receiving unit, and the assembly unit assembles the biological entity according to the biological sequence information. Thus, according to the present invention biological sequence information can be digitally transmitted to a remote location and the information converted into a biological entity, for example a protein useful as a vaccine, immediately upon being received by the receiving unit and without further human intervention after preparing the system for receipt of the information.
    Type: Application
    Filed: August 16, 2013
    Publication date: September 18, 2014
    Applicant: Synthetic Genomics, Inc.
    Inventors: J. Craig Venter, Daniel Gibson, John E. Gill
  • Patent number: 8524251
    Abstract: The invention provides proteins from Neisseria meningitidis, including the amino acid sequences and the corresponding nucleotide sequences. The proteins are predicted to be useful antigens for vaccines and/or diagnostics.
    Type: Grant
    Filed: January 26, 2012
    Date of Patent: September 3, 2013
    Assignees: J. Craig Venter Institute, Inc., Novartis AG
    Inventors: Claire Fraser, Cesira Galeotti, Guido Grandi, Erin Hickey, Vega Masignani, Marirosa Mora, Jeremy Petersen, Mariagrazia Pizza, Rino Rappuoli, Giulio Ratti, Vincenzo Scarlato, Maria Scarselli, Herve Tettelin, J. Craig Venter
  • Publication number: 20130178377
    Abstract: Described herein are highly accurate metaproteomic based methods for diagnosing urogenital and kidney infections, which are easy to perform and that also provide information regarding the extent of the infection, the causative agent(s) and the nature of the host response.
    Type: Application
    Filed: December 27, 2012
    Publication date: July 11, 2013
    Applicant: J. Craig Venter Institute
    Inventor: J. Craig Venter Institute
  • Patent number: 8448702
    Abstract: The present invention describes methods of identifying stimulants for the biogenic production of methane in hydrocarbon-bearing formations. Methods involve the use of microbial nucleic acid sequence information for the determination of gene products that are enzymes in a variety of pathways involved in the conversion of hydrocarbons to methane. Enzymes and stimulants identified by invention methods can be used in processes for enhancing biogenic methane production, for example, by addition to coal seams and coalbed methane wells.
    Type: Grant
    Filed: July 6, 2011
    Date of Patent: May 28, 2013
    Assignee: Synthetic Genomics, Inc.
    Inventors: Gerardo Vicente Toledo, Toby Howard Richardson, Ulrich Stingl, Eric J. Mathur, J. Craig Venter
  • Publication number: 20120164166
    Abstract: The invention provides proteins from Neisseria meningitidis, including the amino acid sequences and the corresponding nucleotide sequences. The proteins are predicted to be useful antigens for vaccines and/or diagnostics.
    Type: Application
    Filed: January 26, 2012
    Publication date: June 28, 2012
    Applicants: NOVARTIS AG, J. CRAIG VENTER INSTITUTE, INC.
    Inventors: Claire Fraser, Cesira Galeotti, Guido Grandi, Erin Hickey, Vega Masignani, Marirosa Mora, Jeremy Petersen, Mariagrazia Pizza, Rino Rappuoli, Giulio Ratti, Vincenzo Scarlato, Maria Scarselli, Herve Tettelin, J. Craig Venter