Patents by Inventor Jörg Sundermeyer

Jörg Sundermeyer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11643425
    Abstract: The invention relates to compounds in accordance with the general formula [Ru(arene)(Ra—N?CR1—CR3?N—Rb)] or [Ru(arene)((Rc,Rd)N—N?CRH1—CRH3?N—N(Re,Rf))]. In this case, arene is selected from the group consisting of mononuclear and polynuclear arenes and heteroarenes. R1, R3, RH1, RH3 and Ra-Rf are independently selected from the group consisting of H, an alkyl radical (C1-C10) and an aryl radical. It further relates to methods for the production of these compounds, compounds obtainable according to these methods, their use and a substrate having on a surface thereof a ruthenium layer or a layer containing ruthenium. In addition, the invention relates to a method for producing compounds [Ru(arene)X2]2, wherein arene is selected from the group consisting of mononuclear and polynuclear arenes and X=halogen, compounds of this type obtainable according to this method, and their use.
    Type: Grant
    Filed: July 26, 2019
    Date of Patent: May 9, 2023
    Assignee: UMICORE AG & CO. KG
    Inventors: Nicholas Rau, Jörg Sundermeyer, Henrik Schumann, Andreas Rivas Nass, Annika Frey, Wolf Schorn, Eileen Woerner, Ralf Karch, Angelino Doppiu
  • Patent number: 11407650
    Abstract: The invention relates to a method for producing a compound of formula MXn from a precursor compound of formula MXm, where M is a metal, X is a halide selected from F, Cl, Br, J, m is a number selected from the range 2 to 8, and n is a number selected from the range 1 to 7, with the condition that n<m, comprising a method step in which the precursor compound is reduced with a silane compound to the compound of formula MXn.
    Type: Grant
    Filed: January 24, 2018
    Date of Patent: August 9, 2022
    Assignee: Umicore AG & Co. KG
    Inventors: Joerg Sundermeyer, Lisa Hamel, Ruben Ramon Mueller, Andreas Rivas-Nass, Angelino Doppiu, Eileen Woerner, Ralf Karch
  • Patent number: 11384102
    Abstract: The invention relates to lithium alkyl aluminates according to the general formula Li[AlR4] and to a method for preparing same, starting from LiAlH4 and RLi in an aprotic solvent. The invention also relates to compounds according to the general formula Li[AlR4] which can be obtained using the claimed method, and to the use thereof. The invention also relates to the use of a lithium alkyl aluminate Li[AlR4] as a transfer reagent for transferring at least one radical R to an element halide or metal halide and to a method for transferring at least one radical R to a compound E(X)q for preparing a compound according to the general formula E(X)q-pRp, where E=aluminium, gallium, indium, thallium, germanium, tin, lead, antimony, bismuth, zinc, cadmium, mercury, or phosphorus, X=halogen, q=2, 3 or 4, and p=1, 2, 3 or 4. The invention also relates to compounds which can be obtained using such a method, to the use thereof, and to a substrate which has an aluminium layer or a layer containing aluminium on one surface.
    Type: Grant
    Filed: November 28, 2019
    Date of Patent: July 12, 2022
    Assignee: Umicore AG & Co. KG
    Inventors: Susanne Herritsch, Joerg Sundermeyer
  • Publication number: 20220153768
    Abstract: Metal complexes of formula (I) are described: [M(L1)x(L2)y(hydra)z]n??formula (I) wherein: M=metal atom having an atomic number selected from the ranges a) through c): a) 12, 21 to 34, with the exception of 30, b) 39 to 52, with the exception of 48, c) 71 to 83, with the exception of 80, L1=neutral or anionic ligand, with x=0 or 1, L2=neutral or anionic ligand, with y=0 or 1, (hydra)=acetone dimethylhydrazone monoanion, with z=1, 2, or 3, n=1 or 2, and the total charge of the complex is 0.
    Type: Application
    Filed: March 27, 2020
    Publication date: May 19, 2022
    Inventors: Joerg SUNDERMEYER, Henrik SCHUMANN, Wolf SCHORN, Nicholas RAU, Annika FREY, Ralf KARCH, Eileen WOERNER, Angelino DOPPIU
  • Publication number: 20220098224
    Abstract: The invention relates to ruthenium complexes of formula (I): [(arene)RuXL] formula (I) wherein the ruthenium includes the following ligands: (arene) arene, which may be optionally substituted, X H or C1-C8 hydrocarbon group, and L R2N—CR1=NR3, wherein R1 is selected from H, C1-C8 hydrocarbon group, which may be optionally substituted, and —NR4R5, wherein R4 and R5 independently of one another are selected from H and C1-C8 hydrocarbon groups, which may be optionally substituted, R2 and R3 independently of one another are selected from C1-C8 hydrocarbon groups, which may be optionally substituted, wherein R2 and R3 are identical to or different from one another, and R1 may be linked directly to R2, R1 may be linked directly to R3 and/or R2 may be linked directly to R3.
    Type: Application
    Filed: January 7, 2020
    Publication date: March 31, 2022
    Inventors: Joerg SUNDERMEYER, Henrik SCHUMANN
  • Publication number: 20220056061
    Abstract: The invention relates to a two-stage synthesis for the production of bis(tertbutylimido)bis(dialkylamido)tungsten compounds according to the general formula [W(NtBu)2(NRARB)2] (I), starting from [W(NtBu)2(NHtBu)2]. The invention also relates to compounds according to the general formula [W(NtBu)2(NRARB)2] (I), obtainable according to the claimed method, compounds according to general formula [W(NtBu)2(NRARB)2] (I), with the exception of [W(NtBu)2(NMe2)2] and [W(NtBu)2(NEtMe)2], the use of a compound [W(NtBu)2(NRARB)2] (I), and a substrate which, on a surface, has a tungsten layer or a tungsten-containing layer. Defined bis(tertbutylimido)bis(dialkylamido)tungsten compounds of the type [W(NtBu)2(NRARB)2] (I) can be produced easily, economically and reproducibly in high purity and good yields by means of the described method. On account of their high purity, the compounds are suitable for producing high-quality substrates which have tungsten layers or tungsten-containing layers.
    Type: Application
    Filed: November 28, 2019
    Publication date: February 24, 2022
    Applicant: UMICORE AG & CO. KG
    Inventors: Susanne HERRITSCH, Joerg SUNDERMEYER, Andreas RIVAS NASS, Oliver BRIEL, Ralf KARCH, Wolf SCHORN, Annika FREY, Angelino DOPPIU, Eileen WOERNER
  • Publication number: 20220041631
    Abstract: The invention relates to lithium alkyl aluminates according to the general formula Li[AlR4] and to a method for preparing same, starting from LiAlH4 and RLi in an aprotic solvent. The invention also relates to compounds according to the general formula Li[AlR4] which can be obtained using the claimed method, and to the use thereof. The invention also relates to the use of a lithium alkyl aluminate Li[AlR4] as a transfer reagent for transferring at least one radical R to an element halide or metal halide and to a method for transferring at least one radical R to a compound E(X)q for preparing a compound according to the general formula E(X)q-pRp, where E=aluminium, gallium, indium, thallium, germanium, tin, lead, antimony, bismuth, zinc, cadmium, mercury, or phosphorus, X=halogen, q=2, 3 or 4, and p=1, 2, 3 or 4. The invention also relates to compounds which can be obtained using such a method, to the use thereof, and to a substrate which has an aluminium layer or a layer containing aluminium on one surface.
    Type: Application
    Filed: November 28, 2019
    Publication date: February 10, 2022
    Inventors: Susanne HERRITSCH, Joerg SUNDERMEYER
  • Publication number: 20210388006
    Abstract: The invention relates to a method for producing dialkylamido element compounds. In particular, the invention relates to a method for producing dialkylamido element compounds of the type E(NRR?)x, wherein first WAIN is reacted with HNRR? in order to form M[Al(NRR?)4] and hydrogen, and then the formed M[Al(NRR?)4] is reacted with EXx in order to form E(NRR?)x and M[AlX4], wherein M=Li, Na, or K, R=CnH2n+1, where n=1 to 20, and independently thereof R?=CnH2n+1, where n=1 to 20, E is an element of the groups 3 to 15 of the periodic table of elements, X=F, Cl, Br, or I, and x=2, 3, 4 or 5.
    Type: Application
    Filed: September 5, 2019
    Publication date: December 16, 2021
    Applicant: UMICORE AG & CO, KG
    Inventors: Susanne HERRITSCH, Joerg SUNDERMEYER, Angelino DOPPIU, Annika FREY, Ralf KARCH, Andreas RIVAS NASS, Wolf SCHORN, Eileen WOERNER
  • Publication number: 20210206790
    Abstract: The invention relates to compounds in accordance with the general formula [Ru(arene)(Ra—N?CR1—CR3?N—Rb)] or [Ru(arene)((Rc,Rd)N—N?CRH1—CRH3?N—N(Re,Rf))]. In this case, arene is selected from the group consisting of mononuclear and polynuclear arenes and heteroarenes. R1, R3, RH1, RH3 and Ra-Rf are independently selected from the group consisting of H, an alkyl radical (C1-C10) and an aryl radical. It further relates to methods for the production of these compounds, compounds obtainable according to these methods, their use and a substrate having on a surface thereof a ruthenium layer or a layer containing ruthenium. In addition, the invention relates to a method for producing compounds [Ru(arene)X2]2, wherein arene is selected from the group consisting of mononuclear and polynuclear arenes and X=halogen, compounds of this type obtainable according to this method, and their use.
    Type: Application
    Filed: July 26, 2019
    Publication date: July 8, 2021
    Applicant: UMICORE AG & CO, KG
    Inventors: Nicholas RAU, Jörg SUNDERMEYER, Henrik SCHUMANN, Andreas RIVAS NASS, Annika FREY, Wolf SCHORN, Eileen WOERNER, Ralf KARCH, Angelino DOPPIU
  • Publication number: 20210198299
    Abstract: The invention relates to the synthesis and provision of a new class of volatile metal organic compounds based on bis(alkylimine)glyoxal and bis(dialkylhydrazone)glyoxal ligands in combination with cyclopentadienide and alkyl ligands for use in ALD and CVD processes.
    Type: Application
    Filed: July 26, 2019
    Publication date: July 1, 2021
    Applicant: UMICORE AG & CO. KG
    Inventors: Nicholas RAU, Joerg SUNDERMEYER, Andreas RIVAS NASS, Ralf KARCH, Annika FREY, Angelino DOPPIU, Eileen WOERNER
  • Publication number: 20200392171
    Abstract: The invention relates to the use of a metal complex, which has at least one ligand of the formula R1—N3—R2, wherein R1 and R2 are hydrocarbon moieties, for depositing the metal or a compound of the metal from the gas phase. The invention further relates to methods for depositing metals from the metal complexes, and to metal complexes, substituted triazene compounds and to methods for the production thereof.
    Type: Application
    Filed: December 12, 2018
    Publication date: December 17, 2020
    Inventors: Joerg SUNDERMEYER, Susanne PULZ, Fabian SCHROEDER
  • Patent number: 10745421
    Abstract: The invention relates to a method for the cost-effective and environmentally friendly production of alkyl indium sesquichloride in high yield and with high selectivity and purity. The alkyl indium sesquichloride produced according to the invention is particularly suitable, also as a result of the high purity and yield, for the production, on demand, of indium-containing precursors in high yield and with high selectivity and purity. As a result of the high purity, the indium-containing precursors that can be produced are particularly suitable for metal organic chemical vapour deposition (MOCVD) or metal organic vapour phase epitaxy (MOVPE). The novel method according to the invention is characterised by the improved execution of the method, in particular a rapid process control. Owing to targeted and extensive use of raw materials that are cost-effective and have a low environmental impact, the method is also suitable for use on an industrial scale.
    Type: Grant
    Filed: February 27, 2019
    Date of Patent: August 18, 2020
    Assignee: UMICORE AG & CO. KG
    Inventors: Joerg Sundermeyer, Annika Frey, Wolf Schorn, Ralf Karch, Andreas Rivas-Nass, Eileen Woerner, Angelino Doppiu
  • Publication number: 20200031684
    Abstract: The invention relates to a method for producing a compound of formula MXn from a precursor compound of formula MXm, where M is a metal, X is a halide selected from F, Cl, Br, J, m is a number selected from the range 2 to 8, and n is a number selected from the range 1 to 7, with the condition that n<m, comprising a method step in which the precursor compound is reduced with a silane compound to the compound of formula MXn.
    Type: Application
    Filed: January 24, 2018
    Publication date: January 30, 2020
    Inventors: Joerg Sundermeyer, Lisa HAMEL, Ruben RAMON MUELLER, Andreas RIVAS-NASS, Angelino DOPPIU, Eileen WOERNER, Ralf KARCH
  • Patent number: 10428089
    Abstract: The invention relates to an improved process for inexpensive and environmentally benign preparation of trialkylgallium compounds of the general formula: R3Ga in high yield and selectivity, where R is alkyl of 1 to 4 carbon atoms. Trialkylgallium is prepared according to the invention via the intermediate stage alkylgallium dichloride (RGaCl2) or dialkylgallium chloride/alkylgallium dichloride mixture (R2GaCl/RGaCl2). The RGaCl2 obtained or the R2GaCl/RGaCl2 mixture also forms part of the subject-matter of the present invention. The novel process of the present invention is notable for improved process management. The process intentionally makes substantial use of inexpensive starting materials and reagents of low environmental impact and so is also useful for the industrial scale.
    Type: Grant
    Filed: March 12, 2015
    Date of Patent: October 1, 2019
    Assignee: Umicore AG & Co. KG
    Inventors: Wolf Schorn, Jörg Sundermeyer, Annika Frey, Ralf Karch, Andreas Rivas-Nass, Eileen Woerner, Angelino Doppiu
  • Publication number: 20190194229
    Abstract: The invention relates to a method for the cost-effective and environmentally friendly production of alkyl indium sesquichloride in high yield and with high selectivity and purity. The alkyl indium sesquichloride produced according to the invention is particularly suitable, also as a result of the high purity and yield, for the production, on demand, of indium-containing precursors in high yield and with high selectivity and purity. As a result of the high purity, the indium-containing precursors that can be produced are particularly suitable for metal organic chemical vapour deposition (MOCVD) or metal organic vapour phase epitaxy (MOVPE). The novel method according to the invention is characterised by the improved execution of the method, in particular a rapid process control. Owing to targeted and extensive use of raw materials that are cost-effective and have a low environmental impact, the method is also suitable for use on an industrial scale.
    Type: Application
    Filed: February 27, 2019
    Publication date: June 27, 2019
    Applicant: UMICORE AG & CO. KG
    Inventors: Joerg SUNDERMEYER, Annika FREY, Wolf SCHORN, Ralf KARCH, Andreas RIVAS-NASS, Eileen WOERNER, Angelino DOPPIU
  • Patent number: 10239892
    Abstract: The invention relates to a method for the cost-effective and environmentally friendly production of alkyl indium sesquichloride in high yield and with high selectivity and purity. The alkyl indium sesquichloride produced according to the invention is particularly suitable, also as a result of the high purity and yield, for the production, on demand, of indium-containing precursors in high yield and with high selectivity and purity. As a result of the high purity, the indium-containing precursors that can be produced are particularly suitable for metal organic chemical vapor deposition (MOCVD) or metal organic vapor phase epitaxy (MOVPE). The novel method according to the invention is characterized by the improved execution of the method, in particular a rapid process control. Owing to targeted and extensive use of raw materials that are cost-effective and have a low environmental impact, the method is also suitable for use on an industrial scale.
    Type: Grant
    Filed: March 16, 2017
    Date of Patent: March 26, 2019
    Assignee: UMICORE AG & CO. KG
    Inventors: Joerg Sundermeyer, Annika Frey, Wolf Schorn, Ralf Karch, Andreas Rivas-Nass, Eileen Woerner, Angelino Doppiu
  • Patent number: 10093687
    Abstract: The present patent application relates to new metal complexes having at least one N-aminoguanidinate ligand. The patent application further relates to the preparation of the new metal complexes and also to their use. The new metal complexes are especially suitable as precursors for the preparation of functional layers by means of gas-phase thin-film processes such as CVD, MO-CVD, MOVPE and ALD. Additionally, they are also suitable as catalysts for olefin hydroamination and for olefin polymerization.
    Type: Grant
    Filed: November 25, 2015
    Date of Patent: October 9, 2018
    Assignee: UMICORE AG & CO. KG
    Inventors: Joerg Sundermeyer, Katrin Schlechter
  • Publication number: 20170260213
    Abstract: The present patent application relates to new metal complexes having at least one N-aminoguanidinate ligand. The patent application further relates to the preparation of the new metal complexes and also to their use. The new metal complexes are especially suitable as precursors for the preparation of functional layers by means of gas-phase thin-film processes such as CVD, MO-CVD, MOVPE and ALD. Additionally, they are also suitable as catalysts for olefin hydroamination and for olefm polymerization.
    Type: Application
    Filed: November 25, 2015
    Publication date: September 14, 2017
    Applicant: UMICORE AG & CO. KG
    Inventors: Joerg SUNDERMEYER, Katrin SCHLECHTER
  • Publication number: 20170183361
    Abstract: The invention relates to a method for the cost-effective and environmentally friendly production of alkyl indium sesquichloride in high yield and with high selectivity and purity. The alkyl indium sesquichloride produced according to the invention is particularly suitable, also as a result of the high purity and yield, for the production, on demand, of indium-containing precursors in high yield and with high selectivity and purity. As a result of the high purity, the indium-containing precursors that can be produced are particularly suitable for metal organic chemical vapour deposition (MOCVD) or metal organic vapour phase epitaxy (MOVPE). The novel method according to the invention is characterised by the improved execution of the method, in particular a rapid process control. Owing to targeted and extensive use of raw materials that are cost-effective and have a low environmental impact, the method is also suitable for use on an industrial scale.
    Type: Application
    Filed: March 16, 2017
    Publication date: June 29, 2017
    Applicant: UMICORE AG & CO. KG
    Inventors: Joerg SUNDERMEYER, Annika Frey, Wolf Schorn, Ralf Karch, Andreas Rivas-Nass, Eileen Woerner, Angelino Doppiu
  • Patent number: 9617284
    Abstract: The invention relates to a method for the cost-effective and environmentally friendly production of alkyl indium sesquichloride in high yield and with high selectivity and purity. The alkyl indium sesquichloride produced according to the invention is particularly suitable, also as a result of the high purity and yield, for the production, on demand, of indium-containing precursors in high yield and with high selectivity and purity. As a result of the high purity, the indium-containing precursors that can be produced are particularly suitable for metal organic chemical vapor deposition (MOCVD) or metal organic vapor phase epitaxy (MOVPE). The novel method according to the invention is characterized by the improved execution of the method, in particular a rapid process control. Owing to targeted and extensive use of raw materials that are cost-effective and have a low environmental impact, the method is also suitable for use on an industrial scale.
    Type: Grant
    Filed: August 18, 2014
    Date of Patent: April 11, 2017
    Assignee: Umicore AG & Co. KG
    Inventors: Joerg Sundermeyer, Annika Frey, Wolf Schorn, Ralf Karch, Andreas Rivas-Nass, Eileen Woerner, Angelino Doppiu