Patents by Inventor J. Riley Hawkins

J. Riley Hawkins has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200085473
    Abstract: Implant connectors and related methods are disclosed herein. In some embodiments, a connector can include a low-profile portion to facilitate use of the connector in surgical applications where space is limited. In some embodiments, a connector can include a biased rod-pusher to allow the connector to “snap” onto a rod and/or to “drag” against the rod, e.g., for provisional positioning of the connector prior to locking.
    Type: Application
    Filed: November 19, 2019
    Publication date: March 19, 2020
    Applicant: Medos International Sarl
    Inventors: Kevin Lee, Christopher Ramsay, J. Riley Hawkins
  • Patent number: 10593240
    Abstract: User interface systems for sterile fields and other working environments are disclosed herein. In some embodiments, a user interface system can include a projector that projects a graphical user interface onto a data board or other substrate disposed within a working environment. The system can also include a camera or other sensor that detects user interaction with the data board or substrate. Detected user interactions can be processed or interpreted by a controller that interfaces with equipment disposed outside of the working environment, thereby allowing user interaction with such equipment from within the working environment. The data board can be an inexpensive, disposable, single-use component of the system that can be easily sterilized or another component suitably prepared for use in a sterile field.
    Type: Grant
    Filed: June 6, 2018
    Date of Patent: March 17, 2020
    Assignee: Medos International Sàrl
    Inventors: Mark Hall, Roman Lomeli, J. Riley Hawkins, Joern Richter
  • Publication number: 20200054377
    Abstract: Longitudinally-adjustable bone anchors and related methods are disclosed herein. The ability to adjust a bone anchor longitudinally can allow the surgeon to bring an implanted bone anchor up to the rod instead of or in addition to bringing the rod down to the bone anchor, which can simplify or eliminate the rod contouring step and reduce or eliminate reduction forces. For example, the surgeon can use a pre-bent rod or put “ideal contours” into a rod, lay the rod across a series of bone anchors, and adjust each bone anchor longitudinally to meet the rod. As another example, coarse adjustment of the fixation system can be achieved by contouring the rod and then fine adjustments can be made by bringing each bone anchor up or down to the rod. Various adjustment mechanisms are disclosed, including bone anchors with telescoping portions and bone anchors with risers or spacers.
    Type: Application
    Filed: October 24, 2019
    Publication date: February 20, 2020
    Inventors: Heiko Koller, J. Riley Hawkins, Christopher Ramsay
  • Publication number: 20200030007
    Abstract: Bone anchor assemblies are disclosed herein that can provide for improved fixation as compared with traditional bone anchor assemblies. An exemplary assembly can include a bracket or wing that extends down from the receiver member and accommodates one or more auxiliary bone anchors that augment the fixation of the assembly's primary bone anchor. Another exemplary assembly can include a plate that is seated between the receiver member and the rod and accommodates one or more auxiliary bone anchors that augment the fixation of the assembly's primary bone anchor. Another exemplary assembly can include a hook that extends out from the receiver member to hook onto an anatomical structure or another implant to augment the fixation of the assembly's primary bone anchor. Surgical methods using the bone anchor assemblies described herein are also disclosed.
    Type: Application
    Filed: September 24, 2019
    Publication date: January 30, 2020
    Applicant: Medos International Sarl
    Inventors: J. Riley Hawkins, Albert Montello, Christopher Ramsay, Kevin Lee, Joseph Peterson, Ben Johnston, Heiko Koller, Todd Albert, Christopher Ames, Brad Currier, Claudius Thome, Masashi Neo
  • Patent number: 10517647
    Abstract: Implant connectors and related methods are disclosed herein. In some embodiments, a connector can include a low-profile portion to facilitate use of the connector in surgical applications where space is limited. In some embodiments, a connector can include a biased rod-pusher to allow the connector to “snap” onto a rod and/or to “drag” against the rod, e.g., for provisional positioning of the connector prior to locking.
    Type: Grant
    Filed: May 18, 2016
    Date of Patent: December 31, 2019
    Assignee: Medos International Sarl
    Inventors: Kevin Lee, Christopher Ramsay, J. Riley Hawkins
  • Publication number: 20190365432
    Abstract: Implant connectors and related methods are disclosed herein. In some embodiments, a connector can include a low-profile portion to facilitate use of the connector in surgical applications where space is limited. In some embodiments, a connector can include a biased rod-pusher to allow the connector to “snap” onto a rod and/or to “drag” against the rod, e.g., for provisional positioning of the connector prior to locking.
    Type: Application
    Filed: June 17, 2019
    Publication date: December 5, 2019
    Applicant: Medos International Sarl
    Inventors: Kevin Lee, Christopher Ramsay, J. Riley Hawkins
  • Patent number: 10485596
    Abstract: Longitudinally-adjustable bone anchors and related methods are disclosed herein. The ability to adjust a bone anchor longitudinally can allow the surgeon to bring an implanted bone anchor up to the rod instead of or in addition to bringing the rod down to the bone anchor, which can simplify or eliminate the rod contouring step and reduce or eliminate reduction forces. For example, the surgeon can use a pre-bent rod or put “ideal contours” into a rod, lay the rod across a series of bone anchors, and adjust each bone anchor longitudinally to meet the rod. As another example, coarse adjustment of the fixation system can be achieved by contouring the rod and then fine adjustments can be made by bringing each bone anchor up or down to the rod. Various adjustment mechanisms are disclosed, including bone anchors with telescoping portions and bone anchors with risers or spacers.
    Type: Grant
    Filed: December 6, 2016
    Date of Patent: November 26, 2019
    Assignee: Medos International Sàrl
    Inventors: Heiko Koller, J. Riley Hawkins, Christopher Ramsay
  • Patent number: 10398476
    Abstract: Implant adapters and related methods are disclosed herein. Exemplary adapters can allow a single connector to be used interchangeably for rod-to-rod, rod-to-anchor, or anchor-to-anchor attachment. In some embodiments, the adapter can fit within tight spaces, can be adjustable in one or more degrees of freedom, or can be configured to “snap” onto a rod and/or to “drag” against the rod, e.g., for provisional retention and positioning of the connector prior to locking.
    Type: Grant
    Filed: December 13, 2016
    Date of Patent: September 3, 2019
    Assignee: Medos International Sàrl
    Inventors: Kevin Lee, J. Riley Hawkins, Sheryl Furlan
  • Publication number: 20190216454
    Abstract: Connectors for connecting or linking one instrument or object to one or more other instruments or objects are disclosed herein. In some embodiments, a connector can include a first arm with a first attachment feature for attaching to a first object, such as a surgical access device, and a second arm with a second attachment feature for attaching to a second object, such as a support. The connector can have an unlocked state, in which the position and orientation of the access device can be adjusted relative to the support, and a locked state in which movement of the access device relative to the support is prevented or limited. Locking the connector can also be effective to clamp or otherwise attach the connector to the access device and the support, or said attachment can be independent of the locking of the connector.
    Type: Application
    Filed: March 22, 2019
    Publication date: July 18, 2019
    Inventors: Daniel Thommen, Eric Buehlmann, Joern Richter, Peter Senn, Veronique Christine Zollmann, Thomas Gamache, Roman Lomeli, Nicholas Pavento, J. Riley Hawkins, Jae Stelzer
  • Patent number: 10321939
    Abstract: Implant connectors and related methods are disclosed herein. In some embodiments, a connector can include a low-profile portion to facilitate use of the connector in surgical applications where space is limited. In some embodiments, a connector can include a biased rod-pusher to allow the connector to “snap” onto a rod and/or to “drag” against the rod, e.g., for provisional positioning of the connector prior to locking.
    Type: Grant
    Filed: October 4, 2016
    Date of Patent: June 18, 2019
    Assignee: Medos International Sarl
    Inventors: Kevin Lee, Christopher Ramsay, J. Riley Hawkins
  • Publication number: 20190175226
    Abstract: Connectors are disclosed herein that can be used to attach a rod to a bone anchor assembly that is already occupied by a separate rod. Various ways of attaching the connector to the bone anchor assembly are disclosed, including arrangements in which the connector is locked to the bone anchor, arrangements in which the connector is constrained in one or more degrees of freedom relative to the bone anchor, arrangements in which the connector is adjustable in one or more degrees of freedom relative to the bone anchor, and arrangements that include a spherical articulation joint. In some embodiments, attachment of the connector to a bone anchor can be aided with the use of a positioner. The geometry of the connector can be selected to minimize the offset between a first rod received in the bone anchor assembly and a second rod received in the connector, for example using an angled or curved rod recess and/or a fastener, or set screw, that is offset from the center of the rod or angled relative to the bone anchor.
    Type: Application
    Filed: February 20, 2019
    Publication date: June 13, 2019
    Inventors: Robert Carruth, John Dieselman, Kevin Lee, J. Riley Hawkins
  • Patent number: 10292726
    Abstract: Devices and methods for tissue removal are disclosed herein, including those in which a powered rotary tool actuates a cutting blade to sever tissue and drives an auger to transport the severed tissue proximally through the device. The severed tissue can be collected in an on-board collection chamber for subsequent use as graft material or otherwise (e.g., assay, analysis, post-processing, etc.). Devices of the type disclosed herein can reduce or eliminate the need to move the device in and out of the surgical site, reduce user input force, and provide improved ergonomics and increased user focus.
    Type: Grant
    Filed: March 17, 2016
    Date of Patent: May 21, 2019
    Assignee: DePuy Synthes Products, Inc.
    Inventors: Michael O'Neil, Zoher Bootwala, J. Riley Hawkins
  • Patent number: 10194995
    Abstract: Systems and methods for registering and tracking multiple anatomical structures, e.g., multiple vertebrae, as a single functional unit for surgical procedures are disclosed herein. In some embodiments, the system can include a bone bridge for attaching a navigation marker to multiple vertebrae and for limiting or preventing movement between the multiple vertebrae. Various ways of attaching the bone bridge are disclosed, including fasteners that extend through gaps or throughholes formed in the bridge, bridges having a jaw portion that clamps the underlying bone, and bridges formed of adhesive or cement and directly attached to the bone. Various adjustment features are also disclosed, including joints that allow the position and/or orientation of the bridge to be adjusted in one or more degrees of freedom, and bridges that include telescoping portions or other features for adjusting a length of the bridge.
    Type: Grant
    Filed: December 12, 2016
    Date of Patent: February 5, 2019
    Assignee: Medos International Sarl
    Inventors: Masashi Neo, J. Riley Hawkins, Aniruddha Raina
  • Publication number: 20190012944
    Abstract: User interface systems for sterile fields and other working environments are disclosed herein. In some embodiments, a user interface system can include a projector that projects a graphical user interface onto a data board or other substrate disposed within a working environment. The system can also include a camera or other sensor that detects user interaction with the data board or substrate. Detected user interactions can be processed or interpreted by a controller that interfaces with equipment disposed outside of the working environment, thereby allowing user interaction with such equipment from within the working environment. The data board can be an inexpensive, disposable, single-use component of the system that can be easily sterilized or another component suitably prepared for use in a sterile field.
    Type: Application
    Filed: June 6, 2018
    Publication date: January 10, 2019
    Inventors: Mark Hall, Roman Lomeli, J. Riley Hawkins, Joern Richter
  • Publication number: 20180325569
    Abstract: Bone anchors and related methods are disclosed herein. In some embodiments, a bone anchor can include a drag interface. Exemplary drag interfaces include (i) friction between a shank and a bushing, (ii) friction between a bushing and a drag ring, (iii) friction generated by a biased saddle, and (iv) combinations of the above. The drag interface can help maintain the relative position between a receiver member and a shank of the bone anchor prior to locking the bone anchor, preventing unintended movement while still allowing free movement when intended by the user. In some embodiments, a bone anchor can include over-rotation blocking features, such as a groove, lip, or protrusion formed on a bushing of the bone anchor. Various other bone anchor features are also disclosed, including high aspect ratio drag rings and compressible drag posts.
    Type: Application
    Filed: May 10, 2017
    Publication date: November 15, 2018
    Inventors: Christopher Ramsay, J. Riley Hawkins, Albert Montello
  • Patent number: 10045773
    Abstract: Devices and methods are provided herein that generally involve suture anchors having one or more anti-backup features configured to resist or prevent backward movement of a suture that is pulled through the suture anchor. In some embodiments, the suture anchor can be configured to permit a suture to slide freely in one direction but resist or prevent suture movement in the opposite direction. For example, cleats can be rotatably mounted within the suture anchor, can project radially outward from an exterior sidewall of the suture anchor, or can project circumferentially from sidewalls of one or more channels formed in the suture anchor's exterior surface.
    Type: Grant
    Filed: August 22, 2016
    Date of Patent: August 14, 2018
    Assignee: MEDOS INTERNATIONAL SARL
    Inventor: J. Riley Hawkins
  • Publication number: 20180214185
    Abstract: Bone anchor assemblies are disclosed herein that can provide for improved fixation as compared with traditional bone anchor assemblies. An exemplary assembly can include a bracket or wing that extends down from the receiver member and accommodates one or more auxiliary bone anchors that augment the fixation of the assembly's primary bone anchor. Another exemplary assembly can include a plate that is seated between the receiver member and the rod and accommodates one or more auxiliary bone anchors that augment the fixation of the assembly's primary bone anchor. Another exemplary assembly can include a hook that extends out from the receiver member to hook onto an anatomical structure or another implant to augment the fixation of the assembly's primary bone anchor. Surgical methods using the bone anchor assemblies described herein are also disclosed.
    Type: Application
    Filed: March 29, 2018
    Publication date: August 2, 2018
    Applicant: Medos International Sarl
    Inventors: J. Riley Hawkins, Albert Montello, Christopher Ramsay, Kevin Lee, Joseph Peterson, Ben Johnston, Heiko Koller, Todd Albert, Chris Ames, Brad Currier, Claudius Thome, Masashi Neo
  • Publication number: 20180214016
    Abstract: Surgical visualization systems and related methods are disclosed herein, e.g., for providing visualization during surgical procedures. Systems and methods herein can be used in a wide range of surgical procedures, including spinal surgeries such as minimally-invasive fusion or discectomy procedures. Systems and methods herein can include various features for enhancing end user experience, improving clinical outcomes, or reducing the invasiveness of a surgery. Exemplary features can include access port integration, hands-free operation, active and/or passive lens cleaning, adjustable camera depth, and many others.
    Type: Application
    Filed: February 21, 2018
    Publication date: August 2, 2018
    Applicant: MEDOS INTERNATIONAL SARL
    Inventors: Daniel Thommen, Judith Flock, Veronique Christine Zollmann, William Kane, J. Riley Hawkins, Thomas Gamache, John Conidi, Bryant Guffey, Eric Kolb
  • Publication number: 20180161073
    Abstract: Implant adapters and related methods are disclosed herein. Exemplary adapters can allow a single connector to be used interchangeably for rod-to-rod, rod-to-anchor, or anchor-to-anchor attachment. In some embodiments, the adapter can fit within tight spaces, can be adjustable in one or more degrees of freedom, or can be configured to “snap” onto a rod and/or to “drag” against the rod, e.g., for provisional retention and positioning of the connector prior to locking.
    Type: Application
    Filed: December 13, 2016
    Publication date: June 14, 2018
    Inventors: Kevin Lee, J. Riley Hawkins, Sheryl Furlan
  • Publication number: 20180161075
    Abstract: Systems and methods for registering and tracking multiple anatomical structures, e.g., multiple vertebrae, as a single functional unit for surgical procedures are disclosed herein. In some embodiments, the system can include a bone bridge for attaching a navigation marker to multiple vertebrae and for limiting or preventing movement between the multiple vertebrae. Various ways of attaching the bone bridge are disclosed, including fasteners that extend through gaps or throughholes formed in the bridge, bridges having a jaw portion that clamps the underlying bone, and bridges formed of adhesive or cement and directly attached to the bone. Various adjustment features are also disclosed, including joints that allow the position and/or orientation of the bridge to be adjusted in one or more degrees of freedom, and bridges that include telescoping portions or other features for adjusting a length of the bridge.
    Type: Application
    Filed: December 12, 2016
    Publication date: June 14, 2018
    Inventors: Masashi Neo, J. Riley Hawkins, Aniruddha Raina