Patents by Inventor Jack Kavalieros

Jack Kavalieros has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190305133
    Abstract: A thin film transistor (TFT) device is provided, where the TFT may include a source and a drain, a gate stack, and a semiconductor body. The gate stack may include a gate dielectric structure and a gate electrode, and the gate stack may be between the source and the drain. A first section of the semiconductor body may be adjacent to at least a section of the gate stack. A spacer may be between the gate stack and the source, where the spacer may be on the semiconductor body, and where a second section of the semiconductor body underneath the spacer may comprise dopants.
    Type: Application
    Filed: March 30, 2018
    Publication date: October 3, 2019
    Applicant: Intel Corporation
    Inventors: Abhishek A. Sharma, Gilbert Dewey, Van Le, Jack Kavalieros, Tahir Ghani
  • Patent number: 10388800
    Abstract: A thin film transistor (TFT) device is provided, where the TFT may include a plurality of stacked structures comprising metal oxide. In an example, any two adjacent structures of the plurality of stacked structures may be separated by a corresponding intervening structure. In an example, the TFT may also include gate dielectric material on at least a first side and a second side of the plurality of stacked structures. In an example, the TFT may further include a gate electrode comprising a first section and a second section, where the first and second sections of the gate electrode may be respectively on the first side and the second side of the plurality of stacked structures.
    Type: Grant
    Filed: March 30, 2018
    Date of Patent: August 20, 2019
    Assignee: Intel Corporation
    Inventors: Seung Hoon Sung, Abhishek A. Sharma, Van H. Le, Gilbert Dewey, Jack Kavalieros, Tahir Ghani
  • Publication number: 20190244936
    Abstract: System on Chip (SoC) solutions integrating an RFIC with a PMIC using a transistor technology based on group III-nitrides (III-N) that is capable of achieving high Ft and also sufficiently high breakdown voltage (BV) to implement high voltage and/or high power circuits. In embodiments, the III-N transistor architecture is amenable to scaling to sustain a trajectory of performance improvements over many successive device generations. In embodiments, the III-N transistor architecture is amenable to monolithic integration with group IV transistor architectures, such as planar and non-planar silicon CMOS transistor technologies. Planar and non-planar HEMT embodiments having one or more of recessed gates, symmetrical source and drain, regrown source/drains are formed with a replacement gate technique permitting enhancement mode operation and good gate passivation.
    Type: Application
    Filed: April 16, 2019
    Publication date: August 8, 2019
    Inventors: Han Wui THEN, Robert CHAU, Valluri RAO, Niloy MUKHERJEE, Marko RADOSAVLJEVIC, Ravi PILLARISETTY, Gilbert DEWEY, Jack KAVALIEROS
  • Publication number: 20190229022
    Abstract: Architectures and techniques for co-integration of heterogeneous materials, such as group III-V semiconductor materials and group IV semiconductors (e.g., Ge) on a same substrate (e.g. silicon). In embodiments, multi-layer heterogeneous semiconductor material stacks having alternating nanowire and sacrificial layers are employed to release nanowires and permit formation of a coaxial gate structure that completely surrounds a channel region of the nanowire transistor. In embodiments, individual PMOS and NMOS channel semiconductor materials are co-integrated with a starting substrate having a blanket layers of alternating Ge/III-V layers. In embodiments, vertical integration of a plurality of stacked nanowires within an individual PMOS and individual NMOS device enable significant drive current for a given layout area.
    Type: Application
    Filed: April 1, 2019
    Publication date: July 25, 2019
    Inventors: Marko RADOSAVLJEVIC, Ravi PILLARISETTY, Gilbert DEWEY, Niloy MUKHERJEE, Jack KAVALIEROS, Willy RACHMADY, Van LE, Benjamin CHU-KUNG, Matthew METZ, Robert CHAU
  • Publication number: 20190205273
    Abstract: Techniques and mechanisms for providing data to be used in an in-memory computation at a memory device. In an embodiment a memory device comprises a first memory array and circuitry, coupled to the first memory array, to perform a data computation based on data stored at the first memory array. Prior to the computation, the first memory array receives the data from a second memory array of the memory device. The second memory array extends horizontally in parallel with, but is offset vertically from, the first memory array. In another embodiment, a single integrated circuit die includes both the first memory array and the second memory array.
    Type: Application
    Filed: September 28, 2018
    Publication date: July 4, 2019
    Inventors: Jack KAVALIEROS, Ram KRISHNAMURTHY, Sasikanth MANIPATRUNI, Gregory CHEN, Van LE, Amrita MATHURIYA, Abhishek SHARMA, Raghavan KUMAR, Phil KNAG, Huseyin SUMBUL
  • Publication number: 20190189749
    Abstract: A subfin leakage problem with respect to the silicon-germanium (SiGe)/shallow trench isolation (STI) interface can be mitigated with a halo implant. A halo implant is used to form a highly resistive layer. For example, a silicon substrate layer 204 is coupled to a SiGe layer, which is coupled to a germanium (Ge) layer. A gate is disposed on the Ge layer. An implant is implanted in the Ge layer that causes the layer to become more resistive. However, an area does not receive the implant due to being protected (or covered) by the gate. The area remains less resistive than the remainder of the Ge layer. In some embodiments, the resistive area of a Ge layer can be etched and/or an undercuttage (etch undercut or EUC) can be performed to expose the unimplanted Ge area of the Ge layer.
    Type: Application
    Filed: September 28, 2016
    Publication date: June 20, 2019
    Applicant: INTEL CORPORATION
    Inventors: Benjamin Chu-Kung, Van Le, Seung Hoon Sung, Jack Kavalieros, Ashish Agrawal, Harold Kennel, Siddharth Chouksey, Anand Murthy, Tahir Ghani, Glenn Glass, Cheng-Ying Huang
  • Patent number: 10319646
    Abstract: Architectures and techniques for co-integration of heterogeneous materials, such as group III-V semiconductor materials and group IV semiconductors (e.g., Ge) on a same substrate (e.g. silicon). In embodiments, multi-layer heterogeneous semiconductor material stacks having alternating nanowire and sacrificial layers are employed to release nanowires and permit formation of a coaxial gate structure that completely surrounds a channel region of the nanowire transistor. In embodiments, individual PMOS and NMOS channel semiconductor materials are co-integrated with a starting substrate having a blanket layers of alternating Ge/III-V layers. In embodiments, vertical integration of a plurality of stacked nanowires within an individual PMOS and individual NMOS device enable significant drive current for a given layout area.
    Type: Grant
    Filed: April 26, 2017
    Date of Patent: June 11, 2019
    Assignee: Intel Corporation
    Inventors: Marko Radosavljevic, Ravi Pillarisetty, Gilbert Dewey, Niloy Mukherjee, Jack Kavalieros, Willy Rachmady, Van Le, Benjamin Chu-Kung, Matthew Metz, Robert Chau
  • Publication number: 20190165106
    Abstract: A group III-N nanowire is disposed on a substrate. A longitudinal length of the nanowire is defined into a channel region of a first group III-N material, a source region electrically coupled with a first end of the channel region, and a drain region electrically coupled with a second end of the channel region. A second group III-N material on the first group III-N material serves as a charge inducing layer, and/or barrier layer on surfaces of nanowire. A gate insulator and/or gate conductor coaxially wraps completely around the nanowire within the channel region. Drain and source contacts may similarly coaxially wrap completely around the drain and source regions.
    Type: Application
    Filed: January 11, 2019
    Publication date: May 30, 2019
    Inventors: Han Wui THEN, Robert CHAU, Benjamin CHU-KUNG, Gilbert DEWEY, Jack KAVALIEROS, Matthew METZ, Niloy MUKHERJEE, Ravi PILLARISETTY, Marko RADOSAVLJEVIC
  • Patent number: 10290614
    Abstract: System on Chip (SoC) solutions integrating an RFIC with a PMIC using a transistor technology based on group III-nitrides (III-N) that is capable of achieving high Ft and also sufficiently high breakdown voltage (BV) to implement high voltage and/or high power circuits. In embodiments, the III-N transistor architecture is amenable to scaling to sustain a trajectory of performance improvements over many successive device generations. In embodiments, the III-N transistor architecture is amenable to monolithic integration with group IV transistor architectures, such as planar and non-planar silicon CMOS transistor technologies. Planar and non-planar HEMT embodiments having one or more of recessed gates, symmetrical source and drain, regrown source/drains are formed with a replacement gate technique permitting enhancement mode operation and good gate passivation.
    Type: Grant
    Filed: December 19, 2011
    Date of Patent: May 14, 2019
    Assignee: Intel Corporation
    Inventors: Han Wui Then, Robert Chau, Valluri Rao, Niloy Mukherjee, Marko Radosavljevic, Ravi Pillarisetty, Gilbert Dewey, Jack Kavalieros
  • Patent number: 10263079
    Abstract: Embodiments of an apparatus and methods for providing three-dimensional complementary metal oxide semiconductor devices comprising modulation doped transistors are generally described herein. Other embodiments may be described and claimed, which may include forming a modulation doped heterostructure, comprising forming an active portion having a first bandgap and forming a delta doped portion having a second bandgap.
    Type: Grant
    Filed: December 17, 2016
    Date of Patent: April 16, 2019
    Assignee: Intel Corporation
    Inventors: Ravi Pillarisetty, Mantu Hudait, Marko Radosavljevic, Willy Rachmady, Gilbert Dewey, Jack Kavalieros
  • Patent number: 10263074
    Abstract: Transistors suitable for high voltage and high frequency operation are disclosed. A nanowire is disposed vertically or horizontally on a substrate. A longitudinal length of the nanowire is defined into a channel region of a first semiconductor material, a source region electrically coupled with a first end of the channel region, a drain region electrically coupled with a second end of the channel region, and an extrinsic drain region disposed between the channel region and drain region. The extrinsic drain region has a wider bandgap than that of the first semiconductor. A gate stack including a gate conductor and a gate insulator coaxially wraps completely around the channel region, drain and source contacts similarly coaxially wrap completely around the drain and source regions.
    Type: Grant
    Filed: May 25, 2017
    Date of Patent: April 16, 2019
    Assignee: Intel Corporation
    Inventors: Han Wui Then, Robert Chau, Benjamin Chu-Kung, Gilbert Dewey, Jack Kavalieros, Matthew Metz, Niloy Mukherjee, Ravi Pillarisetty, Marko Radosavljevic
  • Publication number: 20190080731
    Abstract: Techniques and mechanisms for providing data to be used in an in-memory computation at a memory device. In an embodiment a memory device comprises a first memory array and circuitry, coupled to the first memory array, to perform a data computation based on data stored at the first memory array. Prior to the computation, the first memory array receives the data from a second memory array of the memory device. The second memory array extends horizontally in parallel with, but is offset vertically from, the first memory array. In another embodiment, a single integrated circuit die includes both the first memory array and the second memory array.
    Type: Application
    Filed: September 6, 2018
    Publication date: March 14, 2019
    Inventors: Jack KAVALIEROS, Ram KRISHNAMURTHY, Sasikanth MANIPATRUNI, Gregory CHEN, Van LE, Amrita MATHURIYA, Abhishek SHARMA, Raghavan KUMAR, Phil KNAG, Huseyin SUMBUL
  • Patent number: 10186581
    Abstract: A group III-N nanowire is disposed on a substrate. A longitudinal length of the nanowire is defined into a channel region of a first group III-N material, a source region electrically coupled with a first end of the channel region, and a drain region electrically coupled with a second end of the channel region. A second group III-N material on the first group III-N material serves as a charge inducing layer, and/or barrier layer on surfaces of nanowire. A gate insulator and/or gate conductor coaxially wraps completely around the nanowire within the channel region. Drain and source contacts may similarly coaxially wrap completely around the drain and source regions.
    Type: Grant
    Filed: June 14, 2017
    Date of Patent: January 22, 2019
    Assignee: Intel Corporation
    Inventors: Han Wui Then, Robert Chau, Benjamin Chu-Kung, Gilbert Dewey, Jack Kavalieros, Matthew Metz, Niloy Mukherjee, Ravi Pillarisetty, Marko Radosavljevic
  • Patent number: 10121897
    Abstract: A transistor having a narrow bandgap semiconductor source/drain region is described. The transistor includes a gate electrode formed on a gate dielectric layer formed on a silicon layer. A pair of source/drain regions are formed on opposite sides of the gate electrode wherein said pair of source/drain regions comprise a narrow bandgap semiconductor film formed in the silicon layer on opposite sides of the gate electrode.
    Type: Grant
    Filed: July 26, 2017
    Date of Patent: November 6, 2018
    Assignee: Intel Corporation
    Inventors: Robert S. Chau, Suman Datta, Jack Kavalieros, Justin K. Brask, Mark L. Doczy, Matthew Metz
  • Patent number: 10121861
    Abstract: A nanowire device of the present description may be produced with the incorporation of at least one hardmask during the fabrication of at least one nanowire transistor in order to assist in protecting an uppermost channel nanowire from damage that may result from fabrication processes, such as those used in a replacement metal gate process and/or the nanowire release process. The use of at least one hardmask may result in a substantially damage free uppermost channel nanowire in a multi-stacked nanowire transistor, which may improve the uniformity of the channel nanowires and the reliability of the overall multi-stacked nanowire transistor.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: November 6, 2018
    Assignee: Intel Corporation
    Inventors: Seung Hoon Sung, Seiyon Kim, Kelin Kuhn, Willy Rachmady, Jack Kavalieros
  • Patent number: 10103263
    Abstract: Embodiments of the present invention provide transistor structures having strained channel regions. Strain is created through lattice mismatches in the source and drain regions relative to the channel region of the transistor. In embodiments of the invention, the transistor channel regions are comprised of germanium, silicon, a combination of germanium and silicon, or a combination of germanium, silicon, and tin and the source and drain regions are comprised of a doped III-V compound semiconductor material. Embodiments of the invention are useful in a variety of transistor structures, such as, for example, trigate, bigate, and single gate transistors and transistors having a channel region comprised of nanowires or nanoribbons.
    Type: Grant
    Filed: May 31, 2017
    Date of Patent: October 16, 2018
    Assignee: Intel Corporation
    Inventors: Van H. Le, Harold W. Kennel, Willy Rachmady, Ravi Pillarisetty, Jack Kavalieros, Niloy Mukherjee
  • Patent number: 9947780
    Abstract: Transistors for high voltage and high frequency operation. A non-planar, polar crystalline semiconductor body having a top surface disposed between first and second opposite sidewalls includes a channel region with a first crystalline semiconductor layer disposed over the first and second sidewalls. The first crystalline semiconductor layer is to provide a two dimensional electron gas (2DEG) within the channel region. A gate structure is disposed over the first crystalline semiconductor layer along at least the second sidewall to modulate the 2DEG. First and second sidewalls of the non-planar polar crystalline semiconductor body may have differing polarity, with the channel proximate to a first of the sidewalls. The gate structure may be along a second of the sidewalls to gate a back barrier. The polar crystalline semiconductor body may be a group III-nitride formed on a silicon substrate with the (1010) plane on a (110) plane of the silicon.
    Type: Grant
    Filed: August 4, 2016
    Date of Patent: April 17, 2018
    Assignee: Intel Corporation
    Inventors: Han Wui Then, Robert Chau, Benjamin Chu-Kung, Gilbert Dewey, Jack Kavalieros, Matthew Metz, Niloy Mukherjee, Ravi Pillarisetty, Marko Radosavljevic
  • Patent number: 9934976
    Abstract: Methods and associated structures of forming a microelectronic device are described. Those methods may include forming a contact opening in an inter layer dielectric (ILD) disposed on a substrate, wherein a source/drain contact area is exposed, forming a rare earth metal layer on the source/drain contact area, forming a transition metal layer on the rare earth metal layer; and annealing the rare earth metal layer and the transition metal layer to form a metal silicide stack structure.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: April 3, 2018
    Assignee: Intel Corporation
    Inventors: Niloy Mukherjee, Matt Metz, Gilbert Dewey, Jack Kavalieros, Robert S Chau
  • Patent number: 9865684
    Abstract: An embodiment of the invention includes an epitaxial layer that directly contacts, for example, a nanowire, fin, or pillar in a manner that allows the layer to relax with two or three degrees of freedom. The epitaxial layer may be included in a channel region of a transistor. The nanowire, fin, or pillar may be removed to provide greater access to the epitaxial layer. Doing so may allow for a “all-around gate” structure where the gate surrounds the top, bottom, and sidewalls of the epitaxial layer. Other embodiments are described herein.
    Type: Grant
    Filed: May 8, 2015
    Date of Patent: January 9, 2018
    Assignee: Intel Corporation
    Inventors: Benjamin Chu-Kung, Van Le, Robert Chau, Sansaptak Dasgupta, Gilbert Dewey, Niti Goel, Jack Kavalieros, Matthew Metz, Niloy Mukherjee, Ravi Pillarisetty, Willy Rachmady, Marko Radosavljevic, Han Wui Then, Nancy Zelick
  • Publication number: 20170323972
    Abstract: A transistor having a narrow bandgap semiconductor source/drain region is described. The transistor includes a gate electrode formed on a gate dielectric layer formed on a silicon layer. A pair of source/drain regions are formed on opposite sides of the gate electrode wherein said pair of source/drain regions comprise a narrow bandgap semiconductor film formed in the silicon layer on opposite sides of the gate electrode.
    Type: Application
    Filed: July 26, 2017
    Publication date: November 9, 2017
    Inventors: Robert S. CHAU, Suman DATTA, Jack KAVALIEROS, Justin K. BRASK, Mark L. DOCZY, Matthew METZ