Patents by Inventor Jaime Vargas

Jaime Vargas has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080015678
    Abstract: An embodiment of the invention provides a prosthesis delivery system comprising a delivery catheter having an expandable member and a prosthesis carried over the expandable member. The prosthesis includes a radially expandable scaffold section and at least two anchors extending axially from an end thereof; and means for capturing at least the anchors to prevent the anchors from divaricating from the expandable member as the catheter is advanced through a patient's vasculature.
    Type: Application
    Filed: July 20, 2007
    Publication date: January 17, 2008
    Applicant: TRYTON MEDICAL, INC.
    Inventors: Aaron Kaplan, Jaime Vargas
  • Patent number: 7309343
    Abstract: A tissue punch for creating a hole in the wall of a target blood vessel for receiving an anastomosis device includes a piercing element for penetrating the tissue and a cutting element for cutting a plug of tissue around the pierced hole. The tissue punch includes a trocar for inserting the piercing element. After punching is complete, the piercing element is removed from the trocar through a side wall of the trocar so that a medical device can be deployed through the trocar lumen. The tissue punch may also include a tissue trap for trapping the plug of tissue.
    Type: Grant
    Filed: October 31, 2003
    Date of Patent: December 18, 2007
    Assignee: Cardica, Inc.
    Inventors: Jaime Vargas, Brendan M. Donohoe, Scott C. Anderson, Theodore Bender, Stephen Yencho, Bernard Hausen, Michael Hendricksen, James T. Nielsen
  • Patent number: 7303569
    Abstract: A one piece anastomosis device is disclosed which is formed of a superelastic or pseudoelastic material which self deforms or self deploys from an insertion configuration to a tissue holding configuration. The device in a deployed state preferably includes an inner tissue penetrating flange which penetrate and retains an everted graft vessel and an outer flange. The self deploying anastomosis device does not rely on a temperature transformation to achieve deployment.
    Type: Grant
    Filed: June 13, 2003
    Date of Patent: December 4, 2007
    Assignee: Cardica, Inc.
    Inventors: Stephen Yencho, Jaime Vargas
  • Publication number: 20070238917
    Abstract: An organ manipulator including at least one suction member or adhesive disc mounted to a joint providing freedom of movement of the at least one suction member or adhesive disk relative to its support. A method for retracting and suspending an organ in a retracted position using suction (or adhesive force) so that the organ is free to move normally (e.g., to beat or undergo other limited-amplitude motion) in at least the vertical direction during both steps.
    Type: Application
    Filed: April 23, 2007
    Publication date: October 11, 2007
    Inventors: Steven Peng, Larry Voss, David Hancock, Grace Carlson, John Davis, Albert Chin, Jaime Vargas
  • Publication number: 20070233164
    Abstract: A surgical staple for connecting two tubular tissue structures may include a substantially rectangular base having a first edge and a second edge substantially parallel to one another, and a third edge substantially perpendicular to the first and said second edges; and may also include at least three deformable tines extending from the first and second edges of said base; where no tine that extends from the first edge may be positioned at substantially the same distance from the third edge as any said tine that extends from the second edge; and where deformation of the tines secures the tubular tissue structures together.
    Type: Application
    Filed: June 7, 2007
    Publication date: October 4, 2007
    Applicant: CARDICA, INC.
    Inventors: Theodore Bender, David Bombard, Philipe Manoux, Tenny Chang, Jaime Vargas, Bryan Knodel
  • Publication number: 20070233163
    Abstract: A surgical tool for performing anastomosis between a graft vessel and a target vessel may include an anvil; a cutting element connected to the anvil; and an energy source connected to the cutting element, wherein the energy source is configured to deliver energy to the cutting element. A method for performing anastomosis with that tool may include placing an end of the graft vessel against a side of the target vessel; creating an opening in the wall of the target vessel at a first location; inserting an anvil through the opening from outside the wall of the target vessel into the lumen of the target vessel; creating an incision in the wall of the target vessel spaced apart from the first location; and connecting the graft vessel to the target vessel.
    Type: Application
    Filed: May 31, 2007
    Publication date: October 4, 2007
    Applicant: CARDICA, INC.
    Inventors: David Bombard, Bryan Knodel, Jaime Vargas, Michael Hendricksen, Stephen Yencho, James Nielsen, Bernard Hausen, Brendan Donohoe, Theodore Bender
  • Publication number: 20070119902
    Abstract: A surgical stapler may include a staple holder, an anvil connected to the staple holder, where at least one of the staple holder and the anvil may be movable relative to the other, and where the anvil may include a groove defined therein, and a cutter that may be slidable along the groove in the anvil. Such a stapler may be used for treating a tissue structure having a lumen defined therein and a wall surrounding the lumen, such as by inserting the anvil into the lumen of the tissue structure through an opening in the wall of the tissue structure; and incising the wall of the tissue structure from the inside, utilizing the cutter.
    Type: Application
    Filed: February 2, 2007
    Publication date: May 31, 2007
    Inventors: Jaime Vargas, Michael Hendricksen, Stephen Yencho, Jamey Nielsen, Bernard Hausen, Brendan Donohoe
  • Patent number: 7217285
    Abstract: An apparatus for performing anastomosis between a graft vessel and a target vessel may include a connector holder having spaced-apart arms, and a member connected to the connector holder, where the member is insertable through an opening in a wall of the target vessel at least partially into the lumen of the target vessel. One or more connectors, such as staples, may be deployed from each arm to connect the graft vessel to the target vessel. One or more connectors may be deformable against the member.
    Type: Grant
    Filed: July 23, 2004
    Date of Patent: May 15, 2007
    Assignee: Cardica, Inc.
    Inventors: Jaime Vargas, Michael Hendricksen, Stephen A. Yencho, Jamey Nielsen, Bernard A. Hausen, Brendan Donohoe
  • Publication number: 20070106312
    Abstract: A method for connecting a graft vessel to a target vessel may utilize an integrated tool that includes a movable cam having a number of discrete slots defined therein. The method may include moving the cam, creating an opening in the wall of the target vessel with the integrated tool; and advancing an anastomosis device at least partially into the opening with the integrated tool, where moving the cam causes both the creating of the opening and the advancing of the anastomosis device.
    Type: Application
    Filed: December 22, 2006
    Publication date: May 10, 2007
    Applicant: CARDICA, INC.
    Inventors: Jaime Vargas, Stephen Yencho, Jamey Nielsen, Michael Hendricksen, Bernard Hausen
  • Publication number: 20070043387
    Abstract: A tool that has an introducer having a space therein and a distal aperture at the distal end thereof, and a spike movable within the introducer, may be used in a surgical method for treating a vessel wall. A tissue plug may be removed from the vessel wall with the spike, whereby an opening remains in the vessel wall. The spike then may be moved within the space in the introducer in a direction away from the longitudinal centerline of the distal aperture. An object then may be delivered through the introducer and out of the distal aperture to the opening in the vessel wall.
    Type: Application
    Filed: October 27, 2006
    Publication date: February 22, 2007
    Inventors: Jaime Vargas, Brendan Donohoe, Scott Anderson, Theodore Bender, Stephen Yencho, Bernard Hausen, Michael Hendricksen, James Nielsen
  • Patent number: 7175637
    Abstract: An anastomosis device is a one piece device for connecting a graft vessel to a target vessel without the use of conventional sutures. The anastomosis device includes an expandable tube configured to have a graft vessel secured to the tube. The device has an expandable linkage positioned at one end of the device and expansion of this linkage causes a first radially extending flange to fold outward. This first flange abuts an interior wall of a target vessel and a second flange is formed which abuts an exterior wall of the target vessel trapping the target vessel between the two flanges and secures the end of the graft vessel into an opening in the wall of the target vessel. The device greatly increases the speed with which anastomosis can be performed over known suturing methods and allows anastomosis to be performed in tight spaces.
    Type: Grant
    Filed: September 4, 2001
    Date of Patent: February 13, 2007
    Assignee: Cardica, Inc.
    Inventors: Jaime Vargas, Stephen A. Yencho, Jamey Nielsen, Michael Hendricksen, Bernard A. Hausen
  • Patent number: 7172608
    Abstract: An anastomosis device is a one piece device for connecting a graft vessel to a target vessel without the use of conventional sutures. The anastomosis device includes an expandable tube configured to have a graft vessel secured to the tube. The device has an expandable linkage positioned at one end of the device and expansion of this linkage causes a first radially extending flange to fold outward. This first flange abuts an interior wall of a target vessel and a second flange is formed which abuts an exterior wall of the target vessel trapping the target vessel between the two flanges and secures the end of the graft vessel into an opening in the wall of the target vessel. The device greatly increases the speed with which anastomosis can be performed over known suturing methods and allows anastomosis to be performed in tight spaces.
    Type: Grant
    Filed: June 26, 2003
    Date of Patent: February 6, 2007
    Assignee: Cardica, Inc.
    Inventors: Jaime Vargas, Stephen A. Yencho, Jamey Nielsen, Michael Hendricksen, Bernard A. Hausen
  • Patent number: 7144405
    Abstract: A tissue punch for creating a hole in the wall of a target blood vessel for receiving an anastomosis device includes a piercing element for penetrating the tissue and a cutting element for cutting a plug of tissue around the pierced hole. The tissue punch includes a trocar for inserting the piercing element. After punching is complete, the piercing element is removed from the trocar through a side wall of the trocar so that a medical device can be deployed through the trocar lumen. The tissue punch may also include a tissue trap for trapping the plug of tissue.
    Type: Grant
    Filed: October 31, 2003
    Date of Patent: December 5, 2006
    Assignee: Cardica, Inc.
    Inventors: Jaime Vargas, Brendan M. Donohoe, Scott C. Anderson, Theodore Bender, Stephen Yencho, Bernard Hausen, Michael Hendricksen, James T. Nielsen
  • Patent number: 7128749
    Abstract: An anastomosis device is a one piece device for connecting a graft vessel to a target vessel without the use of conventional sutures. The anastomosis device includes an expandable tube configured to have a graft vessel secured to the tube. The device has an expandable linkage positioned at one end of the device and expansion of this linkage causes a first radially extending flange to fold outward. This first flange abuts an interior wall of a target vessel and a second flange is formed which abuts an exterior wall of the target vessel trapping the target vessel between the two flanges and secures the end of the graft vessel into an opening in the wall of the target vessel. The device greatly increases the speed with which anastomosis can be performed over known suturing methods and allows anastomosis to be performed in tight spaces.
    Type: Grant
    Filed: August 16, 2002
    Date of Patent: October 31, 2006
    Assignee: Cardica, Inc.
    Inventors: Jaime Vargas, Stephen A. Yencho, Jamey Nielsen, Michael Hendricksen, Bernard A. Hausen
  • Publication number: 20060241660
    Abstract: A surgical tool for performing anastomosis may include a handle and a tissue effector connected by a shaft, at least party of which may be flexible. The tissue effector may include a staple holder connected to an anvil.
    Type: Application
    Filed: March 17, 2006
    Publication date: October 26, 2006
    Inventors: David Bombard, Jaime Vargas, James Nielsen, Philipe Manoux, Tenny Chang, Stephen Yencho, Bernard Hausen, Brendan Donohoe, Theodore Bender, Nathan White, Bryan Knodel
  • Publication number: 20060212054
    Abstract: An anastomosis system may include a deployment tool and an anastomosis device, where the anastomosis device may include a first section restrained by the deployment tool, and at least one second section separable from the first section.
    Type: Application
    Filed: May 19, 2006
    Publication date: September 21, 2006
    Inventors: Jaime Vargas, James Nielsen, Michael Hendricksen, Brendan Donohoe, Stephen Yencho, Bernard Hausen
  • Patent number: 7063712
    Abstract: An anastomosis system and method uses an anvil to control and support a tissue site during an anastomosis procedure. The anvil is particularly useful for supporting a wall of a coronary artery during attachment of a graft vessel to the coronary artery because the wall of the coronary artery is very thin, difficult to grasp, and susceptible to tearing. In one method, the anvil is inserted into a pressurized or unpressurized target vessel and is pulled against an inner wall of the target vessel causing tenting of the thin tissue of the vessel wall. A graft vessel is then advanced to the anastomosis site and an end of the graft vessel is positioned adjacent and exterior of the target vessel. Staples are inserted through the tissue of the graft vessel and the target vessel by pivoting the arms of a staple holder towards the anvil. When the ends of the staples engage staple bending features on the anvil, the ends of the staples bend over securing the graft vessel and target vessel together.
    Type: Grant
    Filed: September 24, 2002
    Date of Patent: June 20, 2006
    Assignee: Cardica, Inc.
    Inventors: Jaime Vargas, Michael Hendricksen, Stephen A. Yencho, Jamey Nielsen, Bernard A. Hausen, Brendan Donohoe
  • Publication number: 20060116699
    Abstract: A method and system for performing anastomosis may use an anvil to control and support a tissue site during an anastomosis procedure involving tissue bonding techniques such as adhesive tissue bonding. Adhesive may be applied to mating surfaces of the graft and/or target vessels either before or after the vessels are brought into contact. Adhesive may be applied via an applicator associated with the anvil.
    Type: Application
    Filed: January 13, 2006
    Publication date: June 1, 2006
    Inventors: David Bombard, Theodore Bender, Tenny Chang, Jaime Vargas, Michael Hendricksen, Stephen Yencho, Jamey Nielsen, Bernard Hausen, Brendan Donohoe
  • Patent number: 7048751
    Abstract: A medical device which can be implanted at a target site in a living body. The device includes an inner flange formed by radial expansion of the device and an outer flange formed by axial compression of the device. The device can include an implant portion and a discard portion which separate from each other during formation of the outer flange. The separation can occur by fracturing a frangible linkage or by mechanically separating a portion of the outer flange from a deployment tool. The device can be a one piece anastomosis device for connecting a graft vessel to a target vessel without the use of conventional sutures. The inner and outer flanges capture the edges of an opening in a target vessel and secure the graft vessel to the opening in the target vessel. The device greatly increases the speed with which anastomosis can be performed over known suturing methods.
    Type: Grant
    Filed: October 18, 2002
    Date of Patent: May 23, 2006
    Assignee: Cardica, Inc.
    Inventors: Jaime Vargas, James T. Nielsen, Michael Hendricksen, Brendan M. Donohoe, Stephen Yencho, Bernard Hausen
  • Patent number: 7041112
    Abstract: A method for tensioning incisions made in a target vessel during an anastomosis procedure is provided. After an incision is made in a target vessel, incision tensioners are placed within the incision in order to tension the incision. The incision is tensioned when the incision tensioners are pulled taut in order to stretch the incision to a predetermined length or a predetermined force. The tensioners allow for proper grafting of a graft vessel to the target vessel in an end to side anastomosis. In addition, the incision tensioners allow the incision to have a known geometry, thereby allowing precise grafting of the graft vessel to the target vessel during the anastomosis procedure. After the incision is tensioned, the graft vessel is grafted to the target vessel using clips, sutures, staples or other anastomosis devices. One example of anastomosis clips are configured to capture the graft vessel and the target vessel such that the graft vessel grafts with the target vessel.
    Type: Grant
    Filed: May 11, 2004
    Date of Patent: May 9, 2006
    Assignee: Cardica, Inc.
    Inventors: Jaime Vargas, Tenny Chang, David Bombard