Patents by Inventor James Brauker

James Brauker has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20060020190
    Abstract: Abstract of the Disclosure The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.
    Type: Application
    Filed: March 10, 2005
    Publication date: January 26, 2006
    Applicant: DexCom, Inc.
    Inventors: Apurv Kamath, James Brauker, J. Dobbles
  • Publication number: 20060020192
    Abstract: Abstract of the Disclosure The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.
    Type: Application
    Filed: March 10, 2005
    Publication date: January 26, 2006
    Applicant: DexCom, Inc.
    Inventors: Mark Brister, James Brauker, Paul Neale, Peter Simpson, Sean Saint
  • Publication number: 20060020188
    Abstract: Abstract of the Disclosure The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.
    Type: Application
    Filed: March 10, 2005
    Publication date: January 26, 2006
    Applicant: DexCom, Inc.
    Inventors: Apurv Kamath, James Brauker, J. Dobbles
  • Publication number: 20060020186
    Abstract: Abstract of the Disclosure The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.
    Type: Application
    Filed: March 10, 2005
    Publication date: January 26, 2006
    Applicant: DexCom, Inc.
    Inventors: Mark Brister, Paul Neale, James Brauker
  • Publication number: 20060016700
    Abstract: Abstract of the Disclosure The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.
    Type: Application
    Filed: June 21, 2005
    Publication date: January 26, 2006
    Applicant: DexCom, Inc.
    Inventors: Mark Brister, Peter Simpson, James Brauker
  • Publication number: 20060015020
    Abstract: Abstract of the Disclosure Systems and methods for manufacture of an analyte-measuring device, including adhering a membrane system that allows the passage of the analyte therethrough to a sensing mechanism. The implantable analyte-measuring device includes a body formed from a material that is substantially similar to the membrane system so as to enable sufficiently strong adhesion therebetween, which enables a sufficiently strong adhesive joint capable of withstanding in vivo cellular forces. In some embodiments, the device body includes an insert to which the membrane system is adhered, wherein the insert is formed from a material substantially similar to the membrane system to enable strong adhesion therebetween. The analyte-measuring device is designed with optimized device sizing and maximum membrane adhesion and longevity to enable controlled transport of analytes through the membrane system in vivo with improved device performance.
    Type: Application
    Filed: July 6, 2004
    Publication date: January 19, 2006
    Applicant: DexCom, Inc.
    Inventors: Paul Neale, Mark Tapsak, Sean Saint, James Petisce, James Brauker, Mark Brister
  • Publication number: 20060015024
    Abstract: The present invention relates generally to variable stiffness transcutaneous medical devices including a distal portion designed to be more flexible than a proximal portion. The variable stiffness can be provided by a variable pitch in one or more wires of the device, a variable cross-section in one or more wires of the device, and/or a variable hardening and/or softening in one or more wires of the device.
    Type: Application
    Filed: March 10, 2005
    Publication date: January 19, 2006
    Inventors: Mark Brister, James Brauker
  • Publication number: 20050251083
    Abstract: Disclosed herein are biointerface membranes including a macro-architecture and a micro-architecture co-continuous with and bonded to and/or located within at least a portion of the macro-architecture. The macro- and micro-architectures work together to manage and manipulate the high-level tissue organization and the low-level cellular organization of the foreign body response in vivo, thereby increasing neovascularization close to a device-tissue interface, interfering with barrier cell layer formation, and providing good tissue anchoring, while reducing the effects of motion artifact, and disrupting the organization and/or contracture of the FBC. The biointerface membranes of the preferred embodiments can be utilized with implantable devices such as devices for the detection of analyte concentrations in a biological sample (for example, from a body), cell transplantation devices, drug delivery devices, electrical signal delivering or measuring devices, and/or combinations thereof.
    Type: Application
    Filed: February 9, 2005
    Publication date: November 10, 2005
    Inventors: Victoria Carr-Brendel, Peter Simpson, James Brauker
  • Publication number: 20050242479
    Abstract: Abstract of the Disclosure An implantable analyte sensor including a sensing region for measuring the analyte and a non-sensing region for immobilizing the sensor body in the host. The sensor is implanted in a precisely dimensioned pocket to stabilize the analyte sensor in vivo and enable measurement of the concentration of the analyte in the host before and after formation of a foreign body capsule around the sensor. The sensor further provides a transmitter for RF transmission through the sensor body, electronic circuitry, and a power source optimized for long-term use in the miniaturized sensor body.
    Type: Application
    Filed: May 3, 2004
    Publication date: November 3, 2005
    Inventors: James Petisce, Mark Brister, Mark Shults, James Brauker, Paul Neale
  • Publication number: 20050245799
    Abstract: Abstract of the Disclosure An implantable analyte sensor including a sensing region for measuring the analyte and a non-sensing region for immobilizing the sensor body in the host. The sensor is implanted in a precisely dimensioned pocket to stabilize the analyte sensor in vivo and enable measurement of the concentration of the analyte in the host before and after formation of a foreign body capsule around the sensor. The sensor further provides a transmitter for RF transmission through the sensor body, electronic circuitry, and a power source optimized for long-term use in the miniaturized sensor body.
    Type: Application
    Filed: May 3, 2004
    Publication date: November 3, 2005
    Applicant: DexCom, Inc.
    Inventors: James Brauker, Mark Tapsak, Mark Shults, Victoria Carr-Brendel, Jack Fisher, William Seare, Paul Neale
  • Publication number: 20050245795
    Abstract: Abstract of the Disclosure An implantable analyte sensor including a sensing region for measuring the analyte and a non-sensing region for immobilizing the sensor body in the host. The sensor is implanted in a precisely dimensioned pocket to stabilize the analyte sensor in vivo and enable measurement of the concentration of the analyte in the host before and after formation of a foreign body capsule around the sensor. The sensor further provides a transmitter for RF transmission through the sensor body, electronic circuitry, and a power source optimized for long-term use in the miniaturized sensor body.
    Type: Application
    Filed: May 3, 2004
    Publication date: November 3, 2005
    Applicant: DexCom, Inc.
    Inventors: Paul Goode, Arnold Holmquist, Mark Tapsak, Mark Shults, Victoria Carr-Brendel, James Brauker, Paul Neale, Jason McClure, Mark Brister, Peter Simpson, Rathbun Rhodes
  • Publication number: 20050203360
    Abstract: Abstract of the Disclosure Systems and methods for dynamically and intelligently estimating analyte data from a continuous analyte sensor, including receiving a data stream, selecting one of a plurality of algorithms, and employing the selected algorithm to estimate analyte values. Additional data processing includes evaluating the selected estimative algorithms, analyzing a variation of the estimated analyte values based on statistical, clinical, or physiological parameters, comparing the estimated analyte values with corresponding measure analyte values, and providing output to a user. Estimation can be used to compensate for time lag, match sensor data with corresponding reference data, warn of upcoming clinical risk, replace erroneous sensor data signals, and provide more timely analyte information encourage proactive behavior and preempt clinical risk.
    Type: Application
    Filed: December 8, 2004
    Publication date: September 15, 2005
    Inventors: James Brauker, Victoria Carr-Brendel, Paul Goode, Apurv Kamath, James Thrower, Ben Xavier
  • Publication number: 20050192557
    Abstract: Abstract of the Disclosure Systems and methods for integrating a continuous glucose sensor, including a receiver, a medicament delivery device, and optionally a single point glucose monitor are provided. Manual integrations provide for a physical association between the devices wherein a user (for example, patient or doctor) manually selects the amount, type, and/or time of delivery. Semi-automated integration of the devices includes integrations wherein an operable connection between the integrated components aids the user (for example, patient or doctor) in selecting, inputting, calculating, or validating the amount, type, or time of medicament delivery of glucose values, for example, by transmitting data to another component and thereby reducing the amount of user input required. Automated integration between the devices includes integrations wherein an operable connection between the integrated components provides for full control of the system without required user interaction.
    Type: Application
    Filed: February 26, 2004
    Publication date: September 1, 2005
    Applicant: DexCom
    Inventors: James Brauker, Mark Tapsak, Sean Saint, Apurv Kamath, Paul Neale, Peter Simpson, Michael Mensinger, Dubravka Markovic
  • Publication number: 20050187720
    Abstract: Abstract of the Disclosure Systems and methods for processing sensor analyte data, including initiating calibration, updating calibration, evaluating clinical acceptability of reference and sensor analyte data, and evaluating the quality of sensor calibration. During initial calibration, the analyte sensor data is evaluated over a period of time to determine stability of the sensor. The sensor may be calibrated using a calibration set of one or more matched sensor and reference analyte data pairs. The calibration may be updated after evaluating the calibration set for best calibration based on inclusion criteria with newly received reference analyte data. Fail-safe mechanisms are provided based on clinical acceptability of reference and analyte data and quality of sensor calibration. Algorithms provide for optimized prospective and retrospective analysis of estimated blood analyte data from an analyte sensor.
    Type: Application
    Filed: January 18, 2005
    Publication date: August 25, 2005
    Applicant: Dexcom, Inc.
    Inventors: Paul Goode, James Brauker, Apurv Kamath
  • Publication number: 20050161346
    Abstract: An analyte-measuring device, particularly an electrochemical sensor, is provided for measuring current values at multiple bias potential settings to assess the quality of the analyte measurement, identify interference in the signal, and calculate substantially interference-free analyte concentration measurements. The device and method are suitable for calculating substantially interference-free analyte concentration measurements when glucose is the analyte and acetaminophen is an interfering species.
    Type: Application
    Filed: December 7, 2004
    Publication date: July 28, 2005
    Inventors: Peter Simpson, James Brauker, Victoria Carr-Brendel, Paul Goode, Mark Tapsak
  • Publication number: 20050154271
    Abstract: Abstract of the Disclosure A system is provided for monitoring glucose in a host, including a continuous glucose sensor that produces a data stream indicative of a host’s glucose concentration and an integrated receiver that receives the data stream from the continuous glucose sensor and calibrates the data stream using a single point glucose monitor that is integral with the integrated receiver. The integrated receiver obtains a glucose value from the single point glucose monitor, calibrates the sensor data stream received from the continuous glucose sensor, and displays one or both of the single point glucose measurement values and the calibrated continuous glucose sensor values on the user interface.
    Type: Application
    Filed: November 17, 2004
    Publication date: July 14, 2005
    Inventors: Andrew Rasdal, James Brauker, Paul Neale, Peter Simpson
  • Publication number: 20050143635
    Abstract: Disclosed herein are systems and methods for calibrating a continuous analyte sensor, such as a continuous glucose sensor. One such system utilizes one or more electrodes to measure an additional analyte. Such measurements may provide a baseline or sensitivity measurement for use in calibrating the sensor. Furthermore, baseline and/or sensitivity measurements may be used to trigger events such as digital filtering of data or suspending display of data.
    Type: Application
    Filed: December 3, 2004
    Publication date: June 30, 2005
    Inventors: Apurv Kamath, Peter Simpson, James Brauker, Paul Goode
  • Publication number: 20050115832
    Abstract: The present invention relates generally to systems and methods for improved electrochemical measurement of analytes. The preferred embodiments employ electrode systems including an analyte-measuring electrode for measuring the analyte or the product of an enzyme reaction with the analyte and an auxiliary electrode configured to generate oxygen and/or reduce electrochemical interferants. Oxygen generation by the auxiliary electrode advantageously improves oxygen availability to the enzyme and/or counter electrode; thereby enabling the electrochemical sensors of the preferred embodiments to function even during ischemic conditions. Interferant modification by the auxiliary electrode advantageously renders them substantially non-reactive at the analyte-measuring electrode, thereby reducing or eliminating inaccuracies in the analyte signal due to electrochemical interferants.
    Type: Application
    Filed: July 21, 2004
    Publication date: June 2, 2005
    Inventors: Peter Simpson, James Petisce, Victoria Carr-Brendel, James Brauker
  • Publication number: 20050112169
    Abstract: A membrane for implantation in soft tissue comprising a first domain that supports tissue ingrowth, disrupts contractile forces typically found in a foreign body response, encourages vascularity, and interferes with barrier cell layer formation, and a second domain that is resistant to cellular attachment, is impermeable to cells and cell processes, and allows the passage of analytes. The membrane allows for long-term analyte transport in vivo and is suitable for use as a biointerface for implantable analyte sensors, cell transplantation devices, drug delivery devices, and/or electrical signal delivering or measuring devices. The membrane architecture, including cavity size, depth, and interconnectivity, provide long-term robust functionality of the membrane in vivo.
    Type: Application
    Filed: August 22, 2003
    Publication date: May 26, 2005
    Applicant: DexCom, Inc.
    Inventors: James Brauker, Victoria Carr-Brendel, Mark Tapsak
  • Publication number: 20050103625
    Abstract: The present invention provides a sensor head for use in an implantable device that measures the concentration of an analyte in a biological fluid which includes: a non-conductive body; a working electrode, a reference electrode and a counter electrode, wherein the electrodes pass through the non-conductive body forming an electrochemically reactive surface at one location on the body and forming an electronic connection at another location on the body, further wherein the electrochemically reactive surface of the counter electrode is greater than the surface area of the working electrode; and a multi-region membrane affixed to the nonconductive body and covering the working electrode, reference electrode and counter electrode. In addition, the present invention provides an implantable device including at least one of the sensor heads of the invention and methods of monitoring glucose levels in a host utilizing the implantable device of the invention.
    Type: Application
    Filed: December 22, 2004
    Publication date: May 19, 2005
    Inventors: Rathbun Rhodes, Mark Tapsak, James Brauker, Mark Shults