Patents by Inventor James D. Krieger

James D. Krieger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230213644
    Abstract: An electronically steerable phased array and switching network connected to an FMCW radar transceiver to enable a low-cost monopulse tracking system that covers a wide field of regard using electronic beam steering. In a first mode, beamformer integrated circuits (BFICs) at each element in the array are switched synchronously with transmit/receive (T/R) switches located at the subarray level. This allows the entire aperture to be switched between transmission and reception, enabling the FMCW radar transceiver to be operated in a pulsed configuration. In a second mode, a portion of the T/R switches at the subarray level and all of the connecting BFICs at the element level are fixed in either transmitting or receiving mode, allowing separate portions of the aperture to concurrently transmit or receive. The arrangement of transmitting and receiving subarrays can be dynamically reconfigured to allow for accurate bearing and azimuth estimation using alternating monopulse.
    Type: Application
    Filed: January 6, 2022
    Publication date: July 6, 2023
    Applicant: The Boeing Company
    Inventors: Walter S. Wall, Jonathan J. Lynch, James D. Krieger
  • Publication number: 20230010398
    Abstract: A retrofit system applied to existing FMCW radars in order to convert them into pulsed linear frequency-modulated radars with the ability to dynamically switch between two pulsed modes and an FMCW mode based on the estimated range of a target. This retrofit also includes provisions for adaptively configuring chirp and sweep parameters to optimize range resolution. The result is a retrofit system capable of converting an FMCW radar into a dual pulsed mode radar with adaptive sweep configuration.
    Type: Application
    Filed: July 7, 2021
    Publication date: January 12, 2023
    Applicant: The Boeing Company
    Inventors: Walter S. Wall, Jonathan J. Lynch, James D. Krieger, Evan A. Schlomann
  • Patent number: 11194038
    Abstract: A multistatic array topology and image reconstruction process for fast 3D near field microwave imaging are presented. Together, the techniques allow for hardware efficient realization of an electrically large aperture and video-rate image reconstruction. The array topology samples the scene on a regular grid of phase centers, using a tiling of multistatic arrays. Following a multistatic-to-monostatic correction, the sampled data can then be processed with the well-known and highly efficient monostatic Fast Fourier Transform (FFT) imaging algorithm. In this work, the approach is described and validated experimentally with the formation of high quality microwave images. The scheme is more than two orders of magnitude more computationally efficient than the backprojection method. In fact, it is so efficient that a cluster of four commercial off-the-shelf (COTS) graphical processing units (GPUs) can render a 3D image of a human-sized scene in 0.048-0.101 seconds.
    Type: Grant
    Filed: June 6, 2019
    Date of Patent: December 7, 2021
    Assignee: Massachusetts Institute of Technology
    Inventors: William F. Moulder, James D. Krieger, Denise T. Maurais-Galejs, Huy T. Nguyen, Jeffrey S. Herd
  • Publication number: 20190324135
    Abstract: A multistatic array topology and image reconstruction process for fast 3D near field microwave imaging are presented. Together, the techniques allow for hardware efficient realization of an electrically large aperture and video-rate image reconstruction. The array topology samples the scene on a regular grid of phase centers, using a tiling of multistatic arrays. Following a multistatic-to-monostatic correction, the sampled data can then be processed with the well-known and highly efficient monostatic Fast Fourier Transform (FFT) imaging algorithm. In this work, the approach is described and validated experimentally with the formation of high quality microwave images. The scheme is more than two orders of magnitude more computationally efficient than the backprojection method. In fact, it is so efficient that a cluster of four commercial off-the-shelf (COTS) graphical processing units (GPUs) can render a 3D image of a human-sized scene in 0.048-0.101 seconds.
    Type: Application
    Filed: June 6, 2019
    Publication date: October 24, 2019
    Inventors: William F. Moulder, James D. KRIEGER, Denise T. MAURAIS-GALEJS, Huy T. NGUYEN, Jeffrey S. HERD
  • Patent number: 10353067
    Abstract: A multistatic array topology and image reconstruction process for fast 3D near field microwave imaging are presented. Together, the techniques allow for hardware efficient realization of an electrically large aperture and video-rate image reconstruction. The array topology samples the scene on a regular grid of phase centers, using a tiling of multistatic arrays. Following a multistatic-to-monostatic correction, the sampled data can then be processed with the well-known and highly efficient monostatic Fast Fourier Transform (FFT) imaging algorithm. In this work, the approach is described and validated experimentally with the formation of high quality microwave images. The scheme is more than two orders of magnitude more computationally efficient than the backprojection method. In fact, it is so efficient that a cluster of four commercial off-the-shelf (COTS) graphical processing units (GPUs) can render a 3D image of a human-sized scene in 0.048-0.101 seconds.
    Type: Grant
    Filed: September 12, 2016
    Date of Patent: July 16, 2019
    Assignee: Massachusetts Institute of Technology
    Inventors: William F. Moulder, James D. Krieger, Denise T. Maurais-Galejs, Huy Nguyen, Jeffrey S. Herd
  • Publication number: 20170227636
    Abstract: A multistatic array topology and image reconstruction process for fast 3D near field microwave imaging are presented. Together, the techniques allow for hardware efficient realization of an electrically large aperture and video-rate image reconstruction. The array topology samples the scene on a regular grid of phase centers, using a tiling of multistatic arrays. Following a multistatic-to-monostatic correction, the sampled data can then be processed with the well-known and highly efficient monostatic Fast Fourier Transform (FFT) imaging algorithm. In this work, the approach is described and validated experimentally with the formation of high quality microwave images. The scheme is more than two orders of magnitude more computationally efficient than the backprojection method. In fact, it is so efficient that a cluster of four commercial off-the-shelf (COTS) graphical processing units (GPUs) can render a 3D image of a human-sized scene in 0.048-0.101 seconds.
    Type: Application
    Filed: September 12, 2016
    Publication date: August 10, 2017
    Inventors: William F. Moulder, James D. Krieger, Denise T. Maurais-Galejs, Huy Nguyen, Jeffrey S. Herd