Patents by Inventor James David Burnett

James David Burnett has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7609541
    Abstract: A memory cell including an access transistor coupled to a first storage node and a read port coupled to one of the first storage node or a second storage node is provided. The memory cell further includes a first inverter having an input terminal coupled to the first storage node, an output terminal, and a first power supply voltage terminal for receiving a first power supply voltage. The memory cell further includes a second inverter having an input terminal coupled to the output terminal of the first inverter, an output terminal coupled to the input terminal of the first inverter at the first storage node, and a second power supply voltage terminal for receiving a second power supply voltage, wherein the second power supply voltage is varied relative to the first power supply voltage during a write operation to the memory cell.
    Type: Grant
    Filed: December 27, 2006
    Date of Patent: October 27, 2009
    Assignee: Freescale Semiconductor, Inc.
    Inventors: James David Burnett, Glenn C. Abeln, Jack M. Higman
  • Publication number: 20080158938
    Abstract: A memory cell including an access transistor coupled to a first storage node and a read port coupled to one of the first storage node or a second storage node is provided. The memory cell further includes a first inverter having an input terminal coupled to the first storage node, an output terminal, and a first power supply voltage terminal for receiving a first power supply voltage. The memory cell further includes a second inverter having an input terminal coupled to the output terminal of the first inverter, an output terminal coupled to the input terminal of the first inverter at the first storage node, and a second power supply voltage terminal for receiving a second power supply voltage, wherein the second power supply voltage is varied relative to the first power supply voltage during a write operation to the memory cell.
    Type: Application
    Filed: December 27, 2006
    Publication date: July 3, 2008
    Inventors: James David Burnett, Glenn C. Abeln, Jack M. Higman
  • Patent number: 7195983
    Abstract: A non-volatile memory (NVM) has a silicon germanium (SiGe) drain and a silicon carbon (SiC) source. The source being SiC provides for a stress on the channel that improves N channel mobility. The SiC also has a larger bandgap than the substrate, which is silicon. This results in it being more difficult to generate electron/hole pairs by impact ionization. Thus, it can be advantageous to use the SiC region for the drain during a read. The SiGe is used as the drain for programming and erase. The SiGe, having a smaller bandgap than the silicon substrate results in improved programming by generating electron/hole pairs by impact ionization and improved erasing by generating electron hole/pairs by band-to-band tunneling, both at lower voltage levels.
    Type: Grant
    Filed: August 31, 2004
    Date of Patent: March 27, 2007
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Gowrishankar L. Chindalore, James David Burnett, Craig T. Swift, Ramachandran Muralidhar
  • Patent number: 7105395
    Abstract: A non-volatile memory (NVM) has a silicon germanium (SiGe) drain that is progressively more heavily doped toward the surface of the substrate. The substrate is preferably silicon and the drain is formed by first forming a cavity in the substrate in the drain location. SiGe is epitaxially grown in the cavity with an increasing doping level. Thus, the PN junction between the substrate and the drain is lightly doped on both the P and N side. The drain progressively becomes more heavily doped until the maximum desired doping level is reached, and the remaining portion of the SiGe drain is doped at this maximum desired level. As a further enhancement, the perimeter of the SiGe in the substrate is the same conductivity type as that of the substrate and channel. Thus a portion of the channel is in the SiGe.
    Type: Grant
    Filed: August 31, 2004
    Date of Patent: September 12, 2006
    Assignee: Freescale Semiconductor, Inc.
    Inventors: James David Burnett, Gowrishankar L. Chindalore, Craig T. Swift, Ramachandran Muralidhar
  • Patent number: 6846716
    Abstract: A semiconductor device has recesses formed in the substrate during removal of the anti-reflective coating (ARC) because these recess locations are exposed during the etching of the ARC. Although the etchant is chosen to be selective between the ARC material and the substrate material, this selectivity is limited so that recesses do occur. A problem associated with the formation of these recesses is that the source/drains have further to diffuse to become overlapped with the gate. The result is that the transistors may have reduced current drive. The problem is avoided by waiting to perform the ARC removal until at least after formation of a sidewall spacer around the gate. The consequent recess formation thus occurs further from the gate, which results in reducing or eliminating the impediment this recess can cause to the source/drain diffusion that desirably extends to overlap with the gate.
    Type: Grant
    Filed: December 16, 2003
    Date of Patent: January 25, 2005
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Geoffrey C-F Yeap, Srinivas Jallepalli, Yongjoo Jeon, James David Burnett, Rana P. Singh, Paul A. Grudowski
  • Patent number: 6760270
    Abstract: An erase of a non-volatile memory (NVM) is achieved by first using oxide tunneling followed by hot hole injection (HHI). The subsequent use of HHI completes the erase that the tunneling cannot complete due to saturation. By first using tunneling, preferably Fowler-Nordheim tunneling (FNT), the damage to a bottom dielectric that normally occurs by HHI is significantly reduced. The damage due to HHI is significantly greater at the beginning of the erase when the electric field is greater. By reducing the damage due to HHI, the bottom dielectric can be smaller than that normally used for HHI so that high voltages are not required. Accordingly, the transistors in the periphery do not need to be so oversized as is normally required for HHI and thus saving area and power.
    Type: Grant
    Filed: September 30, 2002
    Date of Patent: July 6, 2004
    Assignee: Motorola, Inc.
    Inventors: Gowrishankar L. Chindalore, James David Burnett
  • Publication number: 20040124450
    Abstract: A semiconductor device has recesses formed in the substrate during removal of the anti-reflective coating (ARC) because these recess locations are exposed during the etching of the ARC. Although the etchant is chosen to be selective between the ARC material and the substrate material, this selectivity is limited so that recesses do occur. A problem associated with the formation of these recesses is that the source/drains have further to diffuse to become overlapped with the gate. The result is that the transistors may have reduced current drive. The problem is avoided by waiting to perform the ARC removal until at least after formation of a sidewall spacer around the gate. The consequent recess formation thus occurs further from the gate, which results in reducing or eliminating the impediment this recess can cause to the source/drain diffusion that desirably extends to overlap with the gate.
    Type: Application
    Filed: December 16, 2003
    Publication date: July 1, 2004
    Inventors: Geoffrey C-F Yeap, Srinivas Jallepalli, Yongjoo Jeon, James David Burnett, Rana P. Singh, Paul A. Grudowski
  • Publication number: 20040062118
    Abstract: An erase of a non-volatile memory (NVM) is achieved by first using oxide tunneling followed by hot hole injection (HHI). The subsequent use of HHI completes the erase that the tunneling cannot complete due to saturation. By first using tunneling, preferably Fowler-Nordheim tunneling (FNT), the damage to a bottom dielectric that normally occurs by HHI is significantly reduced. The damage due to HHI is significantly greater at the beginning of the erase when the electric field is greater. By reducing the damage due to HHI, the bottom dielectric can be smaller than that normally used for HHI so that high voltages are not required. Accordingly, the transistors in the periphery do not need to be so oversized as is normally required for HHI and thus saving area and power.
    Type: Application
    Filed: September 30, 2002
    Publication date: April 1, 2004
    Inventors: Gowrishankar L. Chindalore, James David Burnett
  • Publication number: 20030181028
    Abstract: A semiconductor device has recesses formed in the substrate during removal of the anti-reflective coating (ARC) because these recess locations are exposed during the etching of the ARC. Although the etchant is chosen to be selective between the ARC material and the substrate material, this selectivity is limited so that recesses do occur. A problem associated with the formation of these recesses is that the source/drains have further to diffuse to become overlapped with the gate. The result is that the transistors may have reduced current drive. The problem is avoided by waiting to perform the ARC removal until at least after formation of a sidewall spacer around the gate. The consequent recess formation thus occurs further from the gate, which results in reducing or eliminating the impediment this recess can cause to the source/drain diffusion that desirably extends to overlap with the gate.
    Type: Application
    Filed: March 19, 2002
    Publication date: September 25, 2003
    Inventors: Geoffrey C-F Yeap, Srinivas Jallepalli, Yongjoo Jeon, James David Burnett, Rana P. Singh, Paul A. Grudowski
  • Patent number: 6327182
    Abstract: A semiconductor device having a memory array includes memory cells (101-104), a word line (42), a first bit line (68), and a second bit line (76). Within the memory array, the first and second bit lines (68 and 76) lie at different elevations above the word line (42). Local interconnects (58) are electrically connected to the first bit line (68) and some of the current carrying electrodes (48) in the memory array. The local interconnects (58) allow offset connections to be made. For floating gate memory cells (101-104) in a NOR-type memory array architecture, programming and erasing can be performed using a relatively uniform bias between the source and drain regions (46 and 48) of a memory cell (101) to be programmed without significantly disturbing data in adjacent floating gate memory cells (102-104).
    Type: Grant
    Filed: December 27, 1999
    Date of Patent: December 4, 2001
    Assignee: Motorola Inc.
    Inventors: Danny Pak-Chum Shum, Juan Buxo, John P. Hansen, Scott W. Krueger, James David Burnett, Eric Johan Salter