Patents by Inventor James Donald Paduano

James Donald Paduano has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200301422
    Abstract: An aircrew automation system that provides a pilot with high-fidelity knowledge of the aircraft's physical state, and notifies that pilot of any deviations in expected state based on predictive models. The aircrew automation may be provided as a non-invasive ride-along aircrew automation system that perceives the state of the aircraft through visual techniques, derives the aircraft state vector and other aircraft information, and communicates any deviations from expected aircraft state to the pilot.
    Type: Application
    Filed: May 4, 2020
    Publication date: September 24, 2020
    Inventors: Jessica E. Duda, John Tylko, David Mindell, Fabrice Kunzi, Michael Piedmonte, John Allee, Joshua Torgerson, Jason Ryan, James Donald Paduano, John Brooke Wissler, Andrew Musto, Wendy Feenstra
  • Patent number: 10642270
    Abstract: An aircrew automation system and method for use in an aircraft. The aircrew automation system comprises one or more processors, an optical perception system, an actuation system, and a human-machine interface. The optical perception system monitors, in real-time, one or more cockpit instruments of the aircraft visually to generate flight situation data. The actuation system mechanically engages at least one flight control of the aircraft in response to the one or more flight commands. The human-machine interface provides an interface between a human pilot and the aircrew automation system. The human-machine interface comprises a display device to display a status of the aircraft and the actuation system.
    Type: Grant
    Filed: July 8, 2019
    Date of Patent: May 5, 2020
    Assignee: Aurora Flight Sciences Corporation
    Inventors: Jessica E. Duda, John Tylko, David Mindell, Fabrice Kunzi, Michael Piedmonte, John Allee, Joshua Torgerson, Jason Ryan, James Donald Paduano, John Brooke Wissler, Andrew Musto, Wendy Feenstra
  • Publication number: 20200064840
    Abstract: An aircrew automation system and method for use in an aircraft. The aircrew automation system comprises one or more processors, an optical perception system, an actuation system, and a human-machine interface. The optical perception system monitors, in real-time, one or more cockpit instruments of the aircraft visually to generate flight situation data. The actuation system mechanically engages at least one flight control of the aircraft in response to the one or more flight commands. The human-machine interface provides an interface between a human pilot and the aircrew automation system. The human-machine interface comprises a display device to display a status of the aircraft and the actuation system.
    Type: Application
    Filed: July 8, 2019
    Publication date: February 27, 2020
    Inventors: Jessica E. Duda, John Tylko, David Mindell, Fabrice Kunzi, Michael Piedmonte, John Allee, Joshua Torgerson, Jason Ryan, James Donald Paduano, John Brooke Wissler, Andrew Musto, Wendy Feenstra
  • Publication number: 20200033157
    Abstract: An aircraft, system, and method for sensing and/or releasing chemical agents by an aircraft is disclosed. The aircraft, system, and method may employ a chemical sensor, a wind sensor, an imaging device for capturing environmental features, and/or a processor operably coupled therewith. The processor may be used for collecting data from the chemical sensor, the wind sensor, and the imaging device to identify a navigational waypoint and to provide commands to the chemical sensor or to the aircraft based at least in part on collected data.
    Type: Application
    Filed: July 27, 2018
    Publication date: January 30, 2020
    Inventors: Amanda Kaufman, William Robert Bosworth, James Donald Paduano, Riley C. Griffin, Sachin Jain
  • Patent number: 10359779
    Abstract: An aircrew automation system that provides a pilot with high-fidelity knowledge of the aircraft's physical state, and notifies that pilot of any deviations in expected state based on predictive models. The aircrew automation may be provided as a non-invasive ride-along aircrew automation system that perceives the state of the aircraft through visual techniques, derives the aircraft state vector and other aircraft information, and communicates any deviations from expected aircraft state to the pilot.
    Type: Grant
    Filed: March 21, 2017
    Date of Patent: July 23, 2019
    Assignee: Aurora Flight Sciences Corporation
    Inventors: Jessica E. Duda, John Tylko, David Mindell, Fabrice Kunzi, Michael Piedmonte, John Allee, Joshua Torgerson, Jason Ryan, James Donald Paduano, John Brooke Wissler, Andrew Musto, Wendy Feenstra
  • Publication number: 20170277185
    Abstract: An aircrew automation system that provides a pilot with high-fidelity knowledge of the aircraft's physical state, and notifies that pilot of any deviations in expected state based on predictive models. The aircrew automation may be provided as a non-invasive ride-along aircrew automation system that perceives the state of the aircraft through visual techniques, derives the aircraft state vector and other aircraft information, and communicates any deviations from expected aircraft state to the pilot.
    Type: Application
    Filed: March 21, 2017
    Publication date: September 28, 2017
    Inventors: Jessica E. Duda, John Tylko, David Mindell, Fabrice Kunzi, Michael Piedmonte, John Allee, Joshua Torgerson, Jason Ryan, James Donald Paduano, John Brooke Wissler, Andrew Musto, Wendy Feenstra
  • Patent number: 9682774
    Abstract: A vertical take-off and landing (VTOL) aircraft according to an aspect of the present invention comprises a fuselage, an empennage having an all-moving horizontal stabilizer located at a tail end of the fuselage, a wing having the fuselage positioned approximately halfway between the distal ends of the wing, wherein the wing is configured to transform between a substantially straight wing configuration and a canted wing configuration using a canted hinge located on each side of the fuselage. The VTOL aircraft may further includes one or more retractable pogo supports, wherein a retractable pogo support is configured to deploy from each of the wing's distal ends.
    Type: Grant
    Filed: October 6, 2014
    Date of Patent: June 20, 2017
    Assignee: Aurora Flight Sciences Corporation
    Inventors: James Donald Paduano, Paul Nils Dahlstrand, John Brooke Wissler, Adam Woodworth
  • Patent number: 9540101
    Abstract: A vertical take-off and landing (VTOL) aircraft according to an aspect of the present invention comprises a fuselage, an empennage having an all-moving horizontal stabilizer located at a tail end of the fuselage, a wing having the fuselage positioned approximately halfway between the distal ends of the wing, wherein the wing is configured to transform between a substantially straight wing configuration and a canted wing configuration using a canted hinge located on each side of the fuselage. The VTOL aircraft may further includes one or more retractable pogo supports, wherein a retractable pogo support is configured to deploy from each of the wing's distal ends.
    Type: Grant
    Filed: October 6, 2014
    Date of Patent: January 10, 2017
    Assignee: Aurora Flight Sciences Corporation
    Inventors: James Donald Paduano, Paul Nils Dahlstrand, John Brooke Wissler, Adam Woodworth
  • Publication number: 20150336663
    Abstract: A vertical take-off and landing (VTOL) aircraft according to an aspect of the present invention comprises a fuselage, an empennage having an all-moving horizontal stabilizer located at a tail end of the fuselage, a wing having the fuselage positioned approximately halfway between the distal ends of the wing, wherein the wing is configured to transform between a substantially straight wing configuration and a canted wing configuration using a canted hinge located on each side of the fuselage. The VTOL aircraft may further includes one or more retractable pogo supports, wherein a retractable pogo support is configured to deploy from each of the wing's distal ends.
    Type: Application
    Filed: October 6, 2014
    Publication date: November 26, 2015
    Inventors: JAMES DONALD PADUANO, PAUL NILS DAHLSTRAND, JOHN BROOKE WISSLER, ADAM WOODWORTH
  • Publication number: 20150336666
    Abstract: A vertical take-off and landing (VTOL) aircraft according to an aspect of the present invention comprises a fuselage, an empennage having an all-moving horizontal stabilizer located at a tail end of the fuselage, a wing having the fuselage positioned approximately halfway between the distal ends of the wing, wherein the wing is configured to transform between a substantially straight wing configuration and a canted wing configuration using a canted hinge located on each side of the fuselage. The VTOL aircraft may further includes one or more retractable pogo supports, wherein a retractable pogo support is configured to deploy from each of the wing's distal ends.
    Type: Application
    Filed: October 6, 2014
    Publication date: November 26, 2015
    Inventors: JAMES DONALD PADUANO, PAUL NILS DAHLSTRAND, JOHN BROOKE WISSLER, ADAM WOODWORTH
  • Publication number: 20150021430
    Abstract: A vertical take-off and landing (VTOL) aircraft according to an aspect of the present invention comprises a fuselage, an empennage having an all-moving horizontal stabilizer located at a tail end of the fuselage, a wing having the fuselage positioned approximately halfway between the distal ends of the wing, wherein the wing is configured to transform between a substantially straight wing configuration and a canted wing configuration using a canted hinge located on each side of the fuselage. The VTOL aircraft may further includes one or more retractable pogo supports, wherein a retractable pogo support is configured to deploy from each of the wing's distal ends.
    Type: Application
    Filed: October 6, 2014
    Publication date: January 22, 2015
    Inventors: JAMES DONALD PADUANO, PAUL NILS DAHLSTRAND, JOHN BROOKE WISSLER, ADAM WOODWORTH
  • Publication number: 20130206921
    Abstract: A vertical take-off and landing (VTOL) aircraft according to an aspect of the present invention comprises a fuselage, an empennage having an all-moving horizontal stabilizer located at a tail end of the fuselage, a wing having the fuselage positioned approximately halfway between the distal ends of the wing, wherein the wing is configured to transform between a substantially straight wing configuration and a canted wing configuration using a canted hinge located on each side of the fuselage. The VTOL aircraft may further includes one or more retractable pogo supports, wherein a retractable pogo support is configured to deploy from each of the wing's distal ends.
    Type: Application
    Filed: February 15, 2012
    Publication date: August 15, 2013
    Applicant: AURORA FLIGHT SCIENCES CORPORATION
    Inventors: James Donald Paduano, Paul Nils Dahlstrand, John Brooke Wissler