Patents by Inventor James F. Brown

James F. Brown has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240074001
    Abstract: An aerosol delivery device having a detachable power source is provided. A control body may be coupleable with a cartridge to form an aerosol delivery device. The cartridge may contain an aerosol precursor composition and be equipped with a heating element configured to activate and vaporize components of the aerosol precursor composition. The control body may comprise a housing and a power source detachably coupled to an outer surface of the housing. A control component may be contained within the housing and configured to operate in an active mode in which the control body is coupled with the cartridge. The control component in the active mode may be configured to direct power from the power source to the heating element to activate and vaporize components of the aerosol precursor composition.
    Type: Application
    Filed: November 2, 2023
    Publication date: February 29, 2024
    Inventors: Michael F. Davis, Percy D. Phillips, James W. Rogers, Lisa E. Brown, James Demopoulos
  • Patent number: 11873682
    Abstract: A light absorbing and light emitting device, comprising a first structure supported by a holder. A first portion of the first structure (which can be flexible, sheet-like and/or at least partially opaque) comprises phosphorescent material and/or phase change material on a first side. The first structure is movable relative to the holder between a first position, in which the first side faces a first direction, and a second position, in which the first side faces a second direction. Also, a light admitting, light absorbing and light emitting assembly that comprises a light absorbing and light emitting device and a first light-transmitting structure. Also, a light absorbing and light emitting device that comprises a holder assembly and a plurality of first structures, with phosphorescent and/or phase change material, and each movable between first and second positions. Also, methods of absorbing light and emitting light with such structures.
    Type: Grant
    Filed: March 27, 2019
    Date of Patent: January 16, 2024
    Inventor: James F. Brown
  • Publication number: 20210292551
    Abstract: Chemical structures that define cells in which operating material can be held, as well as compositions that contain such chemical structures and operating material, compositions for use in making such compositions, and methods for making all of the above. Compositions for use in making such chemical structures, comprising nuclear moiety precursor compounds and elongated moiety precursor compounds. Lattice structures comprising nuclear moieties (analogous to nodes) and elongated moieties (analogous to connectors extending between nodes). Articles comprising one or more of such compositions. Also, a structure that comprises a lattice structure/operating material region (comprising at least a first lattice structure (comprising a plurality of nuclear moieties and a plurality of elongated moieties) and at least a first operating material) and at least a first additional region.
    Type: Application
    Filed: January 29, 2021
    Publication date: September 23, 2021
    Inventor: James F. Brown
  • Patent number: 10996033
    Abstract: A projectile apparatus is provided that includes a projectile, a propellant, and optional components such as a wading, a sabot, and an intermediary device. The projectile can be fired through a barrel having a smooth bore. A sabot is provided that can include molded features, for example, a base portion and a plurality of petal portions defining, in-part, a volume for accommodating a projectile. The sabot and wadding can include molded features that control and direct gases produced by the propellant. The apparatus can convert gas pressure or gas velocity into a high rate of projectile spin. The projectile has long-range accuracy due to a high or sustainable velocity and high rate of spin.
    Type: Grant
    Filed: October 24, 2019
    Date of Patent: May 4, 2021
    Inventor: James F. Brown
  • Publication number: 20200308906
    Abstract: A light absorbing and light emitting device, comprising a first structure supported by a holder. A first portion of the first structure (which can be flexible, sheet-like and/or at least partially opaque) comprises phosphorescent material and/or phase change material on a first side. The first structure is movable relative to the holder between a first position, in which the first side faces a first direction, and a second position, in which the first side faces a second direction. Also, a light admitting, light absorbing and light emitting assembly that comprises a light absorbing and light emitting device and a first light-transmitting structure. Also, a light absorbing and light emitting device that comprises a holder assembly and a plurality of first structures, with phosphorescent and/or phase change material, and each movable between first and second positions. Also, methods of absorbing light and emitting light with such structures.
    Type: Application
    Filed: March 27, 2019
    Publication date: October 1, 2020
    Inventor: James F. BROWN
  • Patent number: 10715188
    Abstract: An apparatus and method are provided for converting broad spectrum electromagnetic energy to useful, narrow bands of electromagnetic energy. The broad spectrum electromagnetic energy may be from the Sun or from combustion, and output from the apparatus may be bands of visible light, infrared, microwaves, or a combination thereof. The apparatus can function as part of a highly efficient plant growing system or may function as part of a heating or warming system.
    Type: Grant
    Filed: July 15, 2019
    Date of Patent: July 14, 2020
    Inventor: James F. Brown
  • Patent number: 10591263
    Abstract: A method of making a projectile apparatus is provided that includes making one or components of the apparatus using an additive manufacture technique such as 3-D printing or laser-aided additive manufacture. The projectile apparatus can have a projectile, a propellant, and one or more optional components such as a wading, a sabot, and an intermediary device. The projectile can be fired through a barrel having a smooth bore. Additive manufacture methods can be used that involve forming components from superalloys having nanoparticles incorporated therein. The projectile apparatus can convert gas pressure or gas velocity into a high rate of projectile spin. The projectile has long-range accuracy due to a high or sustainable velocity and high rate of spin.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: March 17, 2020
    Inventor: James F. Brown
  • Publication number: 20200056866
    Abstract: A projectile apparatus is provided that includes a projectile, a propellant, and optional components such as a wading, a sabot, and an intermediary device. The projectile can be fired through a barrel having a smooth bore. A sabot is provided that can include molded features, for example, a base portion and a plurality of petal portions defining, in-part, a volume for accommodating a projectile. The sabot and wadding can include molded features that control and direct gases produced by the propellant. The apparatus can convert gas pressure or gas velocity into a high rate of projectile spin. The projectile has long-range accuracy due to a high or sustainable velocity and high rate of spin.
    Type: Application
    Filed: October 24, 2019
    Publication date: February 20, 2020
    Inventor: James F. Brown
  • Publication number: 20200032073
    Abstract: Chemical structures that define cells in which operating material can be held, as well as compositions that contain such chemical structures and operating material, compositions for use in making such compositions, and methods for making all of the above. Compositions for use in making such chemical structures, comprising nuclear moiety precursor compounds and elongated moiety precursor compounds. Lattice structures comprising nuclear moieties (analogous to nodes) and elongated moieties (analogous to connectors extending between nodes). Articles comprising one or more of such compositions.
    Type: Application
    Filed: July 30, 2018
    Publication date: January 30, 2020
    Inventor: James F. Brown
  • Publication number: 20200032065
    Abstract: Chemical structures that define cells in which operating material can be held, as well as compositions that contain such chemical structures and operating material, compositions for use in making such compositions, and methods for making all of the above. Compositions for use in making such chemical structures, comprising nuclear moiety precursor compounds and elongated moiety precursor compounds. Lattice structures comprising nuclear moieties (analogous to nodes) and elongated moieties (analogous to connectors extending between nodes). Articles comprising one or more of such compositions. Also, a structure that comprises a lattice structure/operating material region (comprising at least a first lattice structure (comprising a plurality of nuclear moieties and a plurality of elongated moieties) and at least a first operating material) and at least a first additional region.
    Type: Application
    Filed: February 7, 2019
    Publication date: January 30, 2020
    Inventor: James F. Brown
  • Publication number: 20190341946
    Abstract: An apparatus and method are provided for converting broad spectrum electromagnetic energy to useful, narrow bands of electromagnetic energy. The broad spectrum electromagnetic energy may be from the Sun or from combustion, and output from the apparatus may be bands of visible light, infrared, microwaves, or a combination thereof. The apparatus can function as part of a highly efficient plant growing system or may function as part of a heating or warming system.
    Type: Application
    Filed: July 15, 2019
    Publication date: November 7, 2019
    Inventor: James F. Brown
  • Patent number: 10396831
    Abstract: An apparatus and method are provided for converting broad spectrum electromagnetic energy to useful, narrow bands of electromagnetic energy. The broad spectrum electromagnetic energy may be from the Sun or from combustion, and output from the apparatus may be bands of visible light, infrared, microwaves, or a combination thereof. The apparatus can function as part of a highly efficient plant growing system or may function as part of a heating or warming system.
    Type: Grant
    Filed: August 3, 2017
    Date of Patent: August 27, 2019
    Inventor: James F. Brown
  • Publication number: 20190044552
    Abstract: An apparatus and method are provided for converting broad spectrum electromagnetic energy to useful, narrow bands of electromagnetic energy. The broad spectrum electromagnetic energy may be from the Sun or from combustion, and output from the apparatus may be bands of visible light, infrared, microwaves, or a combination thereof. The apparatus can function as part of a highly efficient plant growing system or may function as part of a heating or warming system.
    Type: Application
    Filed: August 3, 2017
    Publication date: February 7, 2019
    Inventor: James F. Brown
  • Publication number: 20180154446
    Abstract: A method of making a projectile apparatus is provided that includes making one or components of the apparatus using an additive manufacture technique such as 3-D printing or laser-aided additive manufacture. The projectile apparatus can have a projectile, a propellant, and one or more optional components such as a wading, a sabot, and an intermediary device. The projectile can be fired through a barrel having a smooth bore. Additive manufacture methods can be used that involve forming components from superalloys having nanoparticles incorporated therein. The projectile apparatus can convert gas pressure or gas velocity into a high rate of projectile spin. The projectile has long-range accuracy due to a high or sustainable velocity and high rate of spin.
    Type: Application
    Filed: December 22, 2017
    Publication date: June 7, 2018
    Inventor: James F. Brown
  • Patent number: 9851186
    Abstract: A projectile apparatus is provided that includes a projectile, a propellant, and optional components such as a wading, a sabot, and an intermediary device. The projectile can be fired through a barrel having a smooth bore. A sabot is provided that can include molded features, for example, a base portion and a plurality of petal portions defining, in-part, a volume for accommodating a projectile. The sabot and wadding can include molded features that control and direct gases produced by the propellant. The apparatus can convert gas pressure or gas velocity into a high rate of projectile spin. The projectile has long-range accuracy due to a high or sustainable velocity and high rate of spin.
    Type: Grant
    Filed: March 23, 2016
    Date of Patent: December 26, 2017
    Inventor: James F. Brown
  • Patent number: 9506105
    Abstract: A method for amplifying a target nucleic acid present in a sample includes introducing, via an entrance opening of a planar fluidic assembly, a sample containing one or more target nucleic acids into a flow channel of the planar fluidic assembly, the flow channel extending from the entrance opening to an exit vent and having a substantially uniform cross-section. A plurality of nucleic acid primers that are complementary to a portion of the one or more target nucleic acids are disposed at locations within and along the flow channel. The method further includes subjecting the sample introduced into the flow channel to a primer-based amplification reaction using the nucleic acid primers, wherein the primer-based amplification reaction produces amplified product of the one or more target nucleic acids, and retaining the amplified product at one or more of the locations within the flow channel during the primer-based amplification reaction.
    Type: Grant
    Filed: August 11, 2014
    Date of Patent: November 29, 2016
    Assignees: APPLIED BIOSYSTEMS, LLC, UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY, DEPARTMENT OF HEALTH AND HUMAN SERVICES
    Inventors: James F. Brown, Jonathan E. Silver
  • Publication number: 20160282094
    Abstract: A projectile apparatus is provided that includes a projectile, a propellant, and optional components such as a wading, a sabot, and an intermediary device. The projectile can be fired through a barrel having a smooth bore. A sabot is provided that can include molded features, for example, a base portion and a plurality of petal portions defining, in-part, a volume for accommodating a projectile. The sabot and wadding can include molded features that control and direct gases produced by the propellant. The apparatus can convert gas pressure or gas velocity into a high rate of projectile spin. The projectile has long-range accuracy due to a high or sustainable velocity and high rate of spin.
    Type: Application
    Filed: March 23, 2016
    Publication date: September 29, 2016
    Inventor: James F. BROWN
  • Publication number: 20160145450
    Abstract: Substrates, surfaces, assemblies, kits, compositions, and methods are provided for forming touch screens and other appliance surfaces exhibiting good hydrophobicity, oleophobicity, and abrasion resistance. Methods are provided for increasing a population density of hydroxyl groups on a touch surface of a touch screen substrate without affecting the compressive strength of the back surface. The treated touch surface of the substrate can then be coated with a coating that includes an organo-metalic and/or silane, for example, a fluorosilane such as a perfluoropolyether alkoxysilane. A substrate can retain its compressive resistance to breakage by impact applied to the touch surface while minimizing any decrease in compressive strength against impact against the touch surface. Examples of such substrates include touch screens for mobile and desktop electronic devices, components of 3D display devices, and components for electrowetting display devices.
    Type: Application
    Filed: January 29, 2016
    Publication date: May 26, 2016
    Inventor: James F. Brown
  • Patent number: 9249050
    Abstract: Substrates, surfaces, assemblies, kits, compositions, and methods are provided for forming touch screens and other appliance surfaces exhibiting good hydrophobicity, oleophobicity, and abrasion resistance. Methods are provided for increasing a population density of hydroxyl groups on a touch surface of a touch screen substrate without affecting the compressive strength of the back surface. The treated touch surface of the substrate can then be coated with a coating that includes an organo-metallic and/or silane, for example, a fluorosilane such as a perfluoropolyether alkoxysilane. A substrate can retain its compressive resistance to breakage by impact applied to the touch surface while minimizing any decrease in compressive strength against impact against the touch surface. Examples of such substrates include touch screens for mobile and desktop electronic devices, components of 3D display devices, and components for electrowetting display devices.
    Type: Grant
    Filed: April 15, 2015
    Date of Patent: February 2, 2016
    Assignee: Cytonix, LLC
    Inventor: James F. Brown
  • Publication number: 20150218044
    Abstract: Substrates, surfaces, assemblies, kits, compositions, and methods are provided for forming touch screens and other appliance surfaces exhibiting good hydrophobicity, oleophobicity, and abrasion resistance. Methods are provided for increasing a population density of hydroxyl groups on a touch surface of a touch screen substrate without affecting the compressive strength of the back surface. The treated touch surface of the substrate can then be coated with a coating that includes an organo-metalic and/or silane, for example, a fluorosilane such as a perfluoropolyether alkoxysilane. A substrate can retain its compressive resistance to breakage by impact applied to the touch surface while minimizing any decrease in compressive strength against impact against the touch surface. Examples of such substrates include touch screens for mobile and desktop electronic devices, components of 3D display devices, and components for electrowetting display devices.
    Type: Application
    Filed: April 15, 2015
    Publication date: August 6, 2015
    Inventor: James F. Brown