Patents by Inventor James Fred Salzman

James Fred Salzman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11574887
    Abstract: A semiconductor device includes an integrated circuit attached to a chip carrier in a flip chip configuration. A substrate extends to a back surface of the integrated circuit, and an interconnect region extends to a front surface of the integrated circuit. A substrate bond pad is disposed at the front surface, and is electrically coupled through the interconnect region to the semiconductor material. The chip carrier includes a substrate lead at a front surface of the chip carrier. The substrate lead is electrically coupled to the substrate bond pad. An electrically conductive compression sheet is disposed on the back surface of the integrated circuit, with lower compression tips making electrical contact with the semiconductor material in the substrate. The electrically conductive compression sheet is electrically coupled to the substrate lead of the chip carrier by a back surface shunt disposed outside of the integrated circuit.
    Type: Grant
    Filed: March 24, 2020
    Date of Patent: February 7, 2023
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventor: James Fred Salzman
  • Patent number: 11056490
    Abstract: Disclosed examples include semiconductor devices and fabrication methods to fabricate semiconductor wafers and integrated circuits, including forming a first epitaxial semiconductor layer of a first conductivity type on a first side of a semiconductor substrate of the first conductivity type, forming a nitride or oxide protection layer on a top side of the first epitaxial semiconductor layer, forming a second epitaxial semiconductor layer of the first conductivity type on the second side of the semiconductor substrate, and removing the protection layer from the first epitaxial semiconductor layer. The wafer can be used to fabricate an integrated circuit by forming a plurality of transistors at least partially on the first epitaxial semiconductor layer.
    Type: Grant
    Filed: May 28, 2019
    Date of Patent: July 6, 2021
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: James Fred Salzman, Bradley David Sucher
  • Patent number: 11043467
    Abstract: An integrated circuit is attached to a chip carrier in a flip chip configuration. An electrically conductive conformal layer is disposed on a back surface of the substrate of the integrated circuit. The electrically conductive conformal layer contacts the semiconductor material in the substrate and extending onto, and contacting, a substrate lead of the chip carrier. The substrate lead of the chip carrier is electrically coupled to a substrate bond pad of the integrated circuit. The substrate bond pad is electrically coupled through an interconnect region of the integrated circuit to the substrate of the integrated circuit. A component is attached to the chip carrier and covered with an electrically insulating material. The electrically conductive conformal layer also extends at least partially over the electrically insulating material on the component. The electrically conductive conformal layer is electrically isolated from the component by the electrically insulating material on the component.
    Type: Grant
    Filed: February 4, 2020
    Date of Patent: June 22, 2021
    Assignee: Texas Instruments Incorporated
    Inventor: James Fred Salzman
  • Publication number: 20200219838
    Abstract: A semiconductor device includes an integrated circuit attached to a chip carrier in a flip chip configuration. A substrate extends to a back surface of the integrated circuit, and an interconnect region extends to a front surface of the integrated circuit. A substrate bond pad is disposed at the front surface, and is electrically coupled through the interconnect region to the semiconductor material. The chip carrier includes a substrate lead at a front surface of the chip carrier. The substrate lead is electrically coupled to the substrate bond pad. An electrically conductive compression sheet is disposed on the back surface of the integrated circuit, with lower compression tips making electrical contact with the semiconductor material in the substrate. The electrically conductive compression sheet is electrically coupled to the substrate lead of the chip carrier by a back surface shunt disposed outside of the integrated circuit.
    Type: Application
    Filed: March 24, 2020
    Publication date: July 9, 2020
    Inventor: James Fred Salzman
  • Publication number: 20200176413
    Abstract: An integrated circuit is attached to a chip carrier in a flip chip configuration. An electrically conductive conformal layer is disposed on a back surface of the substrate of the integrated circuit. The electrically conductive conformal layer contacts the semiconductor material in the substrate and extending onto, and contacting, a substrate lead of the chip carrier. The substrate lead of the chip carrier is electrically coupled to a substrate bond pad of the integrated circuit. The substrate bond pad is electrically coupled through an interconnect region of the integrated circuit to the substrate of the integrated circuit. A component is attached to the chip carrier and covered with an electrically insulating material. The electrically conductive conformal layer also extends at least partially over the electrically insulating material on the component. The electrically conductive conformal layer is electrically isolated from the component by the electrically insulating material on the component.
    Type: Application
    Filed: February 4, 2020
    Publication date: June 4, 2020
    Inventor: James Fred Salzman
  • Patent number: 10607958
    Abstract: An integrated circuit is attached to a chip carrier in a flip chip configuration. An electrically conductive conformal layer is disposed on a back surface of the substrate of the integrated circuit. The electrically conductive conformal layer contacts the semiconductor material in the substrate and extending onto, and contacting, a substrate lead of the chip carrier. The substrate lead of the chip carrier is electrically coupled to a substrate bond pad of the integrated circuit. The substrate bond pad is electrically coupled through an interconnect region of the integrated circuit to the substrate of the integrated circuit. A component is attached to the chip carrier and covered with an electrically insulating material. The electrically conductive conformal layer also extends at least partially over the electrically insulating material on the component. The electrically conductive conformal layer is electrically isolated from the component by the electrically insulating material on the component.
    Type: Grant
    Filed: August 28, 2016
    Date of Patent: March 31, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventor: James Fred Salzman
  • Patent number: 10600753
    Abstract: A semiconductor device includes an integrated circuit attached to a chip carrier in a flip chip configuration. A substrate extends to a back surface of the integrated circuit, and an interconnect region extends to a front surface of the integrated circuit. A substrate bond pad is disposed at the front surface, and is electrically coupled through the interconnect region to the semiconductor material. The chip carrier includes a substrate lead at a front surface of the chip carrier. The substrate lead is electrically coupled to the substrate bond pad. An electrically conductive compression sheet is disposed on the back surface of the integrated circuit, with lower compression tips making electrical contact with the semiconductor material in the substrate. The electrically conductive compression sheet is electrically coupled to the substrate lead of the chip carrier by a back surface shunt disposed outside of the integrated circuit.
    Type: Grant
    Filed: August 28, 2016
    Date of Patent: March 24, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventor: James Fred Salzman
  • Patent number: 10428298
    Abstract: A method and apparatus are presented for reducing the methanol content in a fermented solution to create forms healthier to human consumption, thereby reducing headaches and hangovers. In accordance with the disclosed embodiments, the fermented solution is placed in a vacuum vessel and heated to a fixed temperature. Pulling a fixed vacuum within the vessel lowers the boiling point of the solution, creating a vapor selectively of the low-end congeners, for example, methanol. The methanol-rich vapor is condensed and disposed leaving a healthier fermented solution with reduced methanol content. In some embodiments, the fixed temperature is lower than or equal to 32 degrees C. which preserves the aroma and taste of the fermented solution.
    Type: Grant
    Filed: October 29, 2018
    Date of Patent: October 1, 2019
    Inventors: James Fred Salzman, Carl Michael Panasik
  • Publication number: 20190296013
    Abstract: Disclosed examples include semiconductor devices and fabrication methods to fabricate semiconductor wafers and integrated circuits, including forming a first epitaxial semiconductor layer of a first conductivity type on a first side of a semiconductor substrate of the first conductivity type, forming a nitride or oxide protection layer on a top side of the first epitaxial semiconductor layer, forming a second epitaxial semiconductor layer of the first conductivity type on the second side of the semiconductor substrate, and removing the protection layer from the first epitaxial semiconductor layer. The wafer can be used to fabricate an integrated circuit by forming a plurality of transistors at least partially on the first epitaxial semiconductor layer.
    Type: Application
    Filed: May 28, 2019
    Publication date: September 26, 2019
    Inventors: James Fred Salzman, Bradley David Sucher
  • Patent number: 10304827
    Abstract: Disclosed examples include semiconductor devices and fabrication methods to fabricate semiconductor wafers and integrated circuits, including forming a first epitaxial semiconductor layer of a first conductivity type on a first side of a semiconductor substrate of the first conductivity type, forming a nitride or oxide protection layer on a top side of the first epitaxial semiconductor layer, forming a second epitaxial semiconductor layer of the first conductivity type on the second side of the semiconductor substrate, and removing the protection layer from the first epitaxial semiconductor layer. The wafer can be used to fabricate an integrated circuit by forming a plurality of transistors at least partially on the first epitaxial semiconductor layer.
    Type: Grant
    Filed: May 2, 2018
    Date of Patent: May 28, 2019
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: James Fred Salzman, Bradley David Sucher
  • Publication number: 20180254272
    Abstract: Disclosed examples include semiconductor devices and fabrication methods to fabricate semiconductor wafers and integrated circuits, including forming a first epitaxial semiconductor layer of a first conductivity type on a first side of a semiconductor substrate of the first conductivity type, forming a nitride or oxide protection layer on a top side of the first epitaxial semiconductor layer, forming a second epitaxial semiconductor layer of the first conductivity type on the second side of the semiconductor substrate, and removing the protection layer from the first epitaxial semiconductor layer. The wafer can be used to fabricate an integrated circuit by forming a plurality of transistors at least partially on the first epitaxial semiconductor layer.
    Type: Application
    Filed: May 2, 2018
    Publication date: September 6, 2018
    Inventors: James Fred Salzman, Bradley David Sucher
  • Patent number: 10043867
    Abstract: An integrated circuit is formed by providing a heavily doped substrate of a first conductivity type, forming a lightly doped lower epitaxial layer of the first conductivity type over the substrate, implanting dopants of the first conductivity type into the lower epitaxial layer in an area for a shallow component and blocking the dopants from an area for a deep component, forming a lightly doped upper epitaxial layer over the lower epitaxial layer and activating the implanted dopants to form a heavily doped region. The shallow component is formed over the heavily doped region, and the deep component is formed outside the heavily doped region, extending through the upper epitaxial layer into the lower epitaxial layer.
    Type: Grant
    Filed: August 18, 2017
    Date of Patent: August 7, 2018
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: James Fred Salzman, Charles Clayton Hadsell
  • Patent number: 10002870
    Abstract: Disclosed examples include semiconductor devices and fabrication methods to fabricate semiconductor wafers and integrated circuits, including forming a first epitaxial semiconductor layer of a first conductivity type on a first side of a semiconductor substrate of the first conductivity type, forming a nitride or oxide protection layer on a top side of the first epitaxial semiconductor layer, forming a second epitaxial semiconductor layer of the first conductivity type on the second side of the semiconductor substrate, and removing the protection layer from the first epitaxial semiconductor layer. The wafer can be used to fabricate an integrated circuit by forming a plurality of transistors at least partially on the first epitaxial semiconductor layer.
    Type: Grant
    Filed: August 16, 2016
    Date of Patent: June 19, 2018
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: James Fred Salzman, Bradley David Sucher
  • Publication number: 20180053764
    Abstract: Disclosed examples include semiconductor devices and fabrication methods to fabricate semiconductor wafers and integrated circuits, including forming a first epitaxial semiconductor layer of a first conductivity type on a first side of a semiconductor substrate of the first conductivity type, forming a nitride or oxide protection layer on a top side of the first epitaxial semiconductor layer, forming a second epitaxial semiconductor layer of the first conductivity type on the second side of the semiconductor substrate, and removing the protection layer from the first epitaxial semiconductor layer. The wafer can be used to fabricate an integrated circuit by forming a plurality of transistors at least partially on the first epitaxial semiconductor layer.
    Type: Application
    Filed: August 16, 2016
    Publication date: February 22, 2018
    Inventors: James Fred Salzman, Bradley David Sucher
  • Publication number: 20170373174
    Abstract: Disclosed examples include integrated circuits and bipolar transistors with a first region of a first conductivity type in a substrate, a collector region of a second conductivity type disposed in the substrate, and a base region of the first conductivity type extending into the first region. A first emitter region of the second conductivity type extends into the first region and includes a lateral side spaced from and facing the base region. A second emitter region of the second conductivity type extends downward into the first region, abutting the top surface and an upper portion of the first lateral side of the first emitter region to mitigate surface effects and gain degradation caused by hydrogen injection from radiation to provide a radiation hardened bipolar transistor.
    Type: Application
    Filed: June 25, 2016
    Publication date: December 28, 2017
    Applicant: Texas Instruments Incorporated
    Inventors: James Fred Salzman, Randolph William Kahn, Richard Guerra Roybal
  • Publication number: 20170345894
    Abstract: An integrated circuit is formed by providing a heavily doped substrate of a first conductivity type, forming a lightly doped lower epitaxial layer of the first conductivity type over the substrate, implanting dopants of the first conductivity type into the lower epitaxial layer in an area for a shallow component and blocking the dopants from an area for a deep component, forming a lightly doped upper epitaxial layer over the lower epitaxial layer and activating the implanted dopants to form a heavily doped region. The shallow component is formed over the heavily doped region, and the deep component is formed outside the heavily doped region, extending through the upper epitaxial layer into the lower epitaxial layer.
    Type: Application
    Filed: August 18, 2017
    Publication date: November 30, 2017
    Inventors: James Fred Salzman, Charles Clayton Hadsell
  • Patent number: 9741791
    Abstract: An integrated circuit is formed by providing a heavily doped substrate of a first conductivity type, forming a lightly doped lower epitaxial layer of the first conductivity type over the substrate, implanting dopants of the first conductivity type into the lower epitaxial layer in an area for a shallow component and blocking the dopants from an area for a deep component, forming a lightly doped upper epitaxial layer over the lower epitaxial layer and activating the implanted dopants to form a heavily doped region. The shallow component is formed over the heavily doped region, and the deep component is formed outside the heavily doped region, extending through the upper epitaxial layer into the lower epitaxial layer.
    Type: Grant
    Filed: March 7, 2016
    Date of Patent: August 22, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: James Fred Salzman, Charles Clayton Hadsell
  • Patent number: 9653544
    Abstract: Radiation hardened NMOS devices suitable for application in NMOS, CMOS, or BiCMOS integrated circuits, and methods for fabricating them. A device includes a p-type silicon substrate, a field oxide surrounding a moat region on the substrate tapering through a Bird's Beak region to a gate oxide within the moat region, a heavily-doped p-type guard region underlying at least a portion of the Bird's Beak region and terminating at the inner edge of the Bird's Beak region, a gate included in the moat region, and n-type source and drain regions spaced by a gap from the inner edge of the Bird's Beak and guard regions. A variation of minor alterations to the conventional moat and n-type source/drain masks. The resulting devices have improved radiation tolerance while having a high breakdown voltage and minimal impact on circuit density.
    Type: Grant
    Filed: January 28, 2016
    Date of Patent: May 16, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventor: James Fred Salzman
  • Patent number: 9620586
    Abstract: Radiation hardened NMOS devices suitable for application in NMOS, CMOS, or BiCMOS integrated circuits, and methods for fabricating them. A device includes a p-type silicon substrate, a field oxide surrounding a moat region on the substrate tapering through a Bird's Beak region to a gate oxide within the moat region, a heavily-doped p-type guard region underlying at least a portion of the Bird's Beak region and terminating at the inner edge of the Bird's Beak region, a gate included in the moat region, and n-type source and drain regions spaced by a gap from the inner edge of the Bird's Beak and guard regions. A variation of minor alterations to the conventional moat and n-type source/drain masks. The resulting devices have improved radiation tolerance while having a high breakdown voltage and minimal impact on circuit density.
    Type: Grant
    Filed: January 28, 2016
    Date of Patent: April 11, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventor: James Fred Salzman
  • Publication number: 20170062376
    Abstract: An integrated circuit is attached to a chip carrier in a flip chip configuration. An electrically conductive conformal layer is disposed on a back surface of the substrate of the integrated circuit. The electrically conductive conformal layer contacts the semiconductor material in the substrate and extending onto, and contacting, a substrate lead of the chip carrier. The substrate lead of the chip carrier is electrically coupled to a substrate bond pad of the integrated circuit. The substrate bond pad is electrically coupled through an interconnect region of the integrated circuit to the substrate of the integrated circuit. A component is attached to the chip carrier and covered with an electrically insulating material. The electrically conductive conformal layer also extends at least partially over the electrically insulating material on the component. The electrically conductive conformal layer is electrically isolated from the component by the electrically insulating material on the component.
    Type: Application
    Filed: August 28, 2016
    Publication date: March 2, 2017
    Applicant: Texas Instruments Incorporated
    Inventor: James Fred Salzman