Patents by Inventor James G. Chandler

James G. Chandler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110160813
    Abstract: An electrode catheter is introduced into a vein or other hollow anatomical structure, and is positioned at a treatment: site within the structure. The end of the catheter is positioned near a junction formed in the structure. This junction can be the sapheno-femoral junction. The position of the catheter near the junction is determined based on a signal from a device associated with the catheter within the structure. A fiber optic filament which emits light is used with the catheter or a guide wire over which the catheter is advanced. The light is visible externally from the patient. The light dims and may no longer externally visible at the sapheno-femoral junction where the catheter moves past the deep fascia and toward the deep venous system. The position of the catheter can be determined based on this external observation.
    Type: Application
    Filed: September 3, 2010
    Publication date: June 30, 2011
    Applicant: TYCO HEALTHCARE GROUP, L.P.
    Inventors: Arthur W. Zikorus, Ralph G. DePalma, Christopher S. Jones, Brian E. Farley, James G. Chandler
  • Patent number: 7789876
    Abstract: An electrode catheter is introduced into a vein or other hollow anatomical structure, and is positioned at a treatment site within the structure. The end of the catheter is positioned near a junction formed in the structure. This junction can be the sapheno-femoral junction. The position of the catheter near the junction is determined based on a signal from a device associated with the catheter within the structure. A fiber optic filament which emits light is used with the catheter or a guide wire over which the catheter is advanced. The light is visible externally from the patient. The light dims and may no longer externally visible at the sapheno-femoral junction where the catheter moves past the deep fascia and toward the deep venous system. The position of the catheter can be determined based on this external observation.
    Type: Grant
    Filed: April 3, 2001
    Date of Patent: September 7, 2010
    Assignee: Tyco Healthcare Group, LP
    Inventors: Arthur W. Zikorus, Ralph G. DePalma, Christopher S. Jones, Brian E. Farley, James G. Chandler
  • Publication number: 20080249519
    Abstract: An electrode catheter is introduced into a hollow anatomical structure, such as a vein, and is positioned at a treatment site within the structure. Tumescent fluid is injected into the tissue surrounding the treatment site to produce tumescence of the surrounding tissue which then compresses the vein. The solution may include an anesthetic, and may further include a vasoconstrictive drug that shrinks blood vessels. The tumescent swelling in the surrounding tissue causes the hollow anatomical structure to become compressed, thereby exsanguinating the treatment site. Energy is applied by an electrode catheter in apposition with the vein wall to create a heating effect. The heating effect causes the hollow anatomical structure to become molded and durably assume the compressed dimensions caused by the tumescent technique. The electrode catheter can be moved within the structure so as to apply energy to a large section of the hollow anatomic structure.
    Type: Application
    Filed: June 16, 2008
    Publication date: October 9, 2008
    Applicant: VNUS Medical Technologies, Inc.
    Inventors: Mitchel P. Goldman, Robert A. Weiss, Arthur W. Zikorus, James G. Chandler
  • Patent number: 7396355
    Abstract: An electrode catheter is introduced into a hollow anatomical structure, such as a vein, and is positioned at a treatment site within the structure. Tumescent fluid is injected into the tissue surrounding the treatment site to produce tumescence of the surrounding tissue which then compresses the vein. The solution may include an anesthetic, and may further include a vasoconstrictive drug that shrinks blood vessels. The tumescent swelling in the surrounding tissue causes the hollow anatomical structure to become compressed, thereby exsanguinating the treatment site. Energy is applied by an electrode catheter in apposition with the vein wall to create a heating effect. The heating effect causes the hollow anatomical structure to become molded and durably assume the compressed dimensions caused by the tumescent technique. The electrode catheter can be moved within the structure so as to apply energy to a large section of the hollow anatomic structure.
    Type: Grant
    Filed: June 21, 2004
    Date of Patent: July 8, 2008
    Assignee: VNUS Medical Technologies, Inc.
    Inventors: Mitchel P. Goldman, Robert A. Weiss, Arthur W. Zikorus, James G. Chandler
  • Patent number: 6969388
    Abstract: An electrode catheter is introduced into a hollow anatomical structure, such as a vein, and is positioned at a treatment site within the structure. Tumescent fluid is injected into the tissue surrounding the treatment site to produce tumescence of the surrounding tissue which then compresses the vein. The solution may include an anesthetic, and may further include a vasoconstrictive drug that shrinks blood vessels. The tumescent swelling in the surrounding tissue causes the hollow anatomical structure to become compressed, thereby exsanguinating the treatment site. Energy is applied by an electrode catheter in apposition with the vein wall to create a heating effect. The heating effect causes the hollow anatomical structure to become molded and durably assume the compressed dimensions caused by the tumescent technique. The electrode catheter can be moved within the structure so as to apply energy to a large section of the hollow anatomic structure.
    Type: Grant
    Filed: April 23, 2001
    Date of Patent: November 29, 2005
    Assignee: VNUS Medical Technologies, Inc.
    Inventors: Mitchel P. Goldman, Robert A. Weiss, James G. Chandler
  • Publication number: 20040243201
    Abstract: An electrode catheter is introduced into a hollow anatomical structure, such as a vein, and is positioned at a treatment site within the structure. Tumescent fluid is injected into the tissue surrounding the treatment site to produce tumescence of the surrounding tissue which then compresses the vein. The solution may include an anesthetic, and may further include a vasoconstrictive drug that shrinks blood vessels. The tumescent swelling in the surrounding tissue causes the hollow anatomical structure to become compressed, thereby exsanguinating the treatment site. Energy is applied by an electrode catheter in apposition with the vein wall to create a heating effect. The heating effect causes the hollow anatomical structure to become molded and durably assume the compressed dimensions caused by the tumescent technique. The electrode catheter can be moved within the structure so as to apply energy to a large section of the hollow anatomic structure.
    Type: Application
    Filed: June 21, 2004
    Publication date: December 2, 2004
    Applicant: VNUS Medical Technologies, Inc.
    Inventors: Mitchel P. Goldman, Robert A. Weiss, Arthur W. Zikorus, James G. Chandler
  • Patent number: 6752803
    Abstract: An electrode catheter is introduced into a hollow anatomical structure, such as a vein, and is positioned at a treatment site within the structure. Tumescent fluid is injected into the tissue surrounding the treatment site to produce tumescence of the surrounding tissue which then compresses the vein. The solution may include an anesthetic, and may further include a vasoconstrictive drug that shrinks blood vessels. The tumescent swelling in the surrounding tissue causes the hollow anatomical structure to become compressed, thereby exsanguinating the treatment site. Energy is applied by an electrode catheter in apposition with the vein wall to create a heating effect. The heating effect causes the hollow anatomical structure to become molded and durably assume the compressed dimensions caused by the tumescent technique. The electrode catheter can be moved within the structure so as to apply energy to a large section of the hollow anatomic structure.
    Type: Grant
    Filed: July 6, 2001
    Date of Patent: June 22, 2004
    Assignee: VNUS Medical Technologies, Inc.
    Inventors: Mitchel P. Goldman, Robert A. Weiss, Arthur W. Zikorus, James G. Chandler
  • Publication number: 20020068866
    Abstract: An electrode catheter is introduced into a vein or other hollow anatomical structure, and is positioned at a treatment: site within the structure. The end of the catheter is positioned near a junction formed in the structure. This junction can be the sapheno-femoral junction. The position of the catheter near the junction is determined based on a signal from a device associated with the catheter within the structure. A fiber optic filament which emits light is used with the catheter or a guide wire over which the catheter is advanced. The light is visible externally from the patient. The light dims and may no longer externally visible at the sapheno-femoral junction where the catheter moves past the deep fascia and toward the deep venous system. The position of the catheter can be determined based on this external observation.
    Type: Application
    Filed: April 3, 2001
    Publication date: June 6, 2002
    Inventors: Arthur W. Zikorus, Ralph G. DePalma, Christopher S. Jones, Brian E. Farley, James G. Chandler
  • Publication number: 20010041888
    Abstract: An electrode catheter is introduced into a hollow anatomical structure, such as a vein, and is positioned at a treatment site within the structure. Tumescent fluid is injected into the tissue surrounding the treatment site to produce tumescence of the surrounding tissue which then compresses the vein. The solution may include an anesthetic, and may further include a vasoconstrictive drug that shrinks blood vessels. The tumescent swelling in the surrounding tissue causes the hollow anatomical structure to become compressed, thereby exsanguinating the treatment site. Energy is applied by an electrode catheter in apposition with the vein wall to create a heating effect. The heating effect causes the hollow anatomical structure to become molded and durably assume the compressed dimensions caused by the tumescent technique. The electrode catheter can be moved within the structure so as to apply energy to a large section of the hollow anatomic structure.
    Type: Application
    Filed: July 6, 2001
    Publication date: November 15, 2001
    Inventors: Mitchel P. Goldman, Robert A. Weiss, Arthur W. Zikorus, James G. Chandler
  • Publication number: 20010016739
    Abstract: An electrode catheter is introduced into a hollow anatomical structure, such as a vein, and is positioned at a treatment site within the structure. Tumescent fluid is injected into the tissue surrounding the treatment site to produce tumescence of the surrounding tissue which then compresses the vein. The solution may include an anesthetic, and may further include a vasoconstrictive drug that shrinks blood vessels. The tumescent swelling in the surrounding tissue causes the hollow anatomical structure to become compressed, thereby exsanguinating the treatment site. Energy is applied by an electrode catheter in apposition with the vein wall to create a heating effect. The heating effect causes the hollow anatomical structure to become molded and durably assume the compressed dimensions caused by the tumescent technique. The electrode catheter can be moved within the structure so as to apply energy to a large section of the hollow anatomic structure.
    Type: Application
    Filed: April 23, 2001
    Publication date: August 23, 2001
    Inventors: Mitchel P. Goldman, Robert A. Weiss, Arthur W. Zikorus, James G. Chandler
  • Patent number: 6258084
    Abstract: An electrode catheter is introduced into a hollow anatomical structure, such as a vein, and is positioned at a treatment site within the structure. Tumescent fluid is injected into the tissue surrounding the treatment site to produce tumescence of the surrounding tissue which then compresses the vein. The solution may include an anesthetic, and may further include a vasoconstrictive drug that shrinks blood vessels. The tumescent swelling in the surrounding tissue causes the hollow anatomical structure to become compressed, thereby exsanguinating the treatment site. Energy is applied by an electrode catheter in apposition with the vein wall to create a heating effect. The heating effect causes the hollow anatomical structure to become molded and durably assume the compressed dimensions caused by the tumescent technique. The electrode catheter can be moved within the structure so as to apply energy to a large section of the hollow anatomic structure.
    Type: Grant
    Filed: March 10, 1999
    Date of Patent: July 10, 2001
    Assignee: Vnus Medical Technologies, Inc.
    Inventors: Mitchel P. Goldman, Robert A. Weiss, Arthur W. Zikorus, James G. Chandler