Patents by Inventor James G. Metz

James G. Metz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210395765
    Abstract: This disclosure concerns recombinant host organisms genetically modified with a polyunsaturated fatty acid (PUFA) synthase system and one or more accessory proteins that allow for and/or improve the production of PUFAs in the host organism. The disclosure also concerns methods of making and using such organisms as well as products obtained from such organisms.
    Type: Application
    Filed: June 22, 2021
    Publication date: December 23, 2021
    Inventors: Terence A. Walsh, Daniel J. Gachotte, Cory M. Larsen, Scott Bevan, P. Ann Owens-Merlo, James G. Metz, Ross Zirkle
  • Patent number: 11046968
    Abstract: This disclosure concerns recombinant host organisms genetically modified with a polyunsaturated fatty acid (PUFA) synthase system and one or more accessory proteins that allow for and/or improve the production of PUFAs in the host organism. The disclosure also concerns methods of making and using such organisms as well as products obtained from such organisms.
    Type: Grant
    Filed: June 12, 2018
    Date of Patent: June 29, 2021
    Assignees: Dow AgroSciences LLC, DSM IP Assets B.V.
    Inventors: Terence A. Walsh, Daniel J. Gachotte, Cory M. Larsen, Scott Bevan, P. Ann Owens-Merlo, James G. Metz, Ross Zirkle
  • Patent number: 10793837
    Abstract: This disclosure concerns a novel modular docosahexaenoic acid (DHA) synthase and recombinant host organisms genetically modified with such synthase and one or more accessory proteins that allow for and/or improve the production of PUFAs in the host organism. The disclosure also concerns methods of making and using such organisms as well as products obtained from such organisms.
    Type: Grant
    Filed: June 6, 2016
    Date of Patent: October 6, 2020
    Assignee: DSM IP Assets B.V
    Inventors: James G. Metz, Jun Wang, Bastien Chevreux, Ross E. Zirkle, Anne-Cecile Bayne, James Casey Lippmeier
  • Publication number: 20190100733
    Abstract: Factors For the Production and Accumulation of Polyunsaturated Fatty Acids (PUFAs) Derived from PUFA Synthases Abstract Disclosed are novel enhancing factor proteins of the PUFA synthase systems, nucleic acid molecules encoding the same, recombinant nucleic acid molecules and recombinant host cells comprising such nucleic acid molecules, genetically modified microorganisms comprising the same, and methods of making and using the same. Also disclosed are genetically modified microorganisms that have been genetically modified to express a PUFA synthase system for the production of PUFAs, wherein the microorganisms have been modified to express the novel enhancing factor proteins of the PUFA synthase system.
    Type: Application
    Filed: August 21, 2018
    Publication date: April 4, 2019
    Inventors: James G. METZ, Jerry M. KUNER, David Glen MCCASKILL, Mendy Louise FOSTER
  • Publication number: 20180282711
    Abstract: This disclosure concerns recombinant host organisms genetically modified with a polyunsaturated fatty acid (PUFA) synthase system and one or more accessory proteins that allow for and/or improve the production of PUFAs in the host organism. The disclosure also concerns methods of making and using such organisms as well as products obtained from such organisms.
    Type: Application
    Filed: June 12, 2018
    Publication date: October 4, 2018
    Inventors: Terence A. Walsh, Daniel J. Gachotte, Cory M. Larsen, Scott Bevan, P. Ann Owens-Merlo, James G. Metz, Ross Zirkle
  • Publication number: 20180171310
    Abstract: This disclosure concerns a novel modular docosahexaenoic acid (DHA) synthase and recombinant host organisms genetically modified with such synthase and one or more accessory proteins that allow for and/or improve the production of PUFAs in the host organism. The disclosure also concerns methods of making and using such organisms as well as products obtained from such organisms.
    Type: Application
    Filed: June 6, 2016
    Publication date: June 21, 2018
    Inventors: James G. METZ, Jun WANG, Bastien CHEVREUX, Ross E. ZIRKLE, Anne-Cecile BAYNE, James Casey LIPPMEIER
  • Patent number: 9994828
    Abstract: This disclosure concerns recombinant host organisms genetically modified with a polyunsaturated fatty acid (PUFA) synthase system and one or more accessory proteins that allow for and/or improve the production of PUFAs in the host organism. The disclosure also concerns methods of making and using such organisms as well as products obtained from such organisms.
    Type: Grant
    Filed: November 26, 2014
    Date of Patent: June 12, 2018
    Assignees: Dow AgroSciences LLC, DSM IP Assets B.V.
    Inventors: Terence A. Walsh, Daniel J. Gachotte, Cory M. Larsen, Scott Bevan, P. Ann Owens-Merlo, James G. Metz, Ross Zirkle
  • Patent number: 9382521
    Abstract: Disclosed are novel acyl-CoA synthetases and novel acyltransferases, nucleic acid molecules encoding the same, recombinant nucleic acid molecules and recombinant host cells comprising such nucleic acid molecules, genetically modified organisms (microorganisms and plants) comprising the same, and methods of making and using the same. Also disclosed are genetically modified organisms (e.g., plants, microorganisms) that have been genetically modified to express a PKS-like system for the production of PUFAs (a PUFA PKS system or PUFA synthase), wherein the organisms have been modified to express an acyl-CoA synthetase, to express an acyl transferase, to delete or inactivate a fatty acid synthase (FAS) expressed by the organism, to reduce competition for malonyl CoA with the PUFA synthase or to increase the level of malonyl CoA in the organism, and in one aspect, to inhibit KASII or KASIII.
    Type: Grant
    Filed: March 21, 2013
    Date of Patent: July 5, 2016
    Assignee: DSM IP Assets B.V.
    Inventors: James G. Metz, Jerry M. Kuner, James Casey Lippmeier
  • Publication number: 20150299676
    Abstract: This disclosure concerns recombinant host organisms genetically modified with a polyunsaturated fatty acid (PUFA) synthase system and one or more accessory proteins that allow for and/or improve the production of PUFAs in the host organism. The disclosure also concerns methods of making and using such organisms as well as products obtained from such organisms.
    Type: Application
    Filed: November 26, 2014
    Publication date: October 22, 2015
    Inventors: Terence A. Walsh, Daniel J. Gachotte, Cory M. Larsen, Scott Bevan, P. Ann Owens-Merlo, James G. Metz, Ross Zirkle
  • Patent number: 8945875
    Abstract: Disclosed are nucleic acid and amino acid sequences for acetolactate synthase, acetolactate synthase regulatory regions, ?-tubulin promoter, a promoter from a Thraustochytriales polyketide synthase (PKS) system, and fatty acid desaturase promoter, each from a Thraustochytriales microorganism. Also disclosed are recombinant vectors useful for transformation of Thraustochytriales microorganisms, as well as a method of transformation of Thraustochytriales microorganisms. The recombinant nucleic acid molecules of the present invention can be used for the expression of foreign nucleic acids in a Thraustochytriales microorganism as well as for the deletion, mutation, or inactivation of genes in Thraustochytriales microorganisms.
    Type: Grant
    Filed: June 21, 2013
    Date of Patent: February 3, 2015
    Assignee: DSM IP Assets B.V.
    Inventors: Paul G. Roessler, T. Dave Matthews, Tom M. Ramseier, James G. Metz
  • Patent number: 8859855
    Abstract: Disclosed are chimeric polyunsaturated fatty acid (PUFA) olyketide synthase (PKS) proteins and chimeric PUFA PKS systems, including chimeric PUFA PKS proteins and systems derived from Schizochytrium and Thraustochytrium. Disclosed are nucleic acids and proteins encoding such chimeric PUFA PKS proteins and systems, genetically modified organisms comprising such chimeric PUFA PKS proteins and systems, and methods of making and using such chimeric PUFA PKS proteins and systems.
    Type: Grant
    Filed: October 2, 2012
    Date of Patent: October 14, 2014
    Assignee: DSM IP Assets B.V.
    Inventors: Craig A. Weaver, Ross Zirkle, Daniel H. Doherty, James G. Metz
  • Publication number: 20140289904
    Abstract: Disclosed are novel acyl-CoA synthetases and novel acyltransferases, nucleic acid molecules encoding the same, recombinant nucleic acid molecules and recombinant host cells comprising such nucleic acid molecules, genetically modified organisms (microorganisms and plants) comprising the same, and methods of making and using the same. Also disclosed are genetically modified organisms (e.g., plants, microorganisms) that have been genetically modified to express a PKS-like system for the production of PUFAs (a PUFA PKS system or PUFA synthase), wherein the organisms have been modified to express an acyl-CoA synthetase, to express an acyl transferase, to delete or inactivate a fatty acid synthase (FAS) expressed by the organism, to reduce competition for malonyl CoA with the PUFA synthase or to increase the level of malonyl CoA in the organism, and in one aspect, to inhibit KASII or KASIII.
    Type: Application
    Filed: March 21, 2013
    Publication date: September 25, 2014
    Applicant: DSM IP Assets B.V.
    Inventors: James G. METZ, Jerry M. Kuner, James Casey Lippmeier
  • Publication number: 20130295607
    Abstract: Disclosed are nucleic acid and amino acid sequences for acetolactate synthase, acetolactate synthase regulatory regions, ?-tubulin promoter, a promoter from a Thraustochytriales polyketide synthase (PKS) system, and fatty acid desaturase promoter, each from a Thraustochytriales microorganism. Also disclosed are recombinant vectors useful for transformation of Thraustochytriales microorganisms, as well as a method of transformation of Thraustochytriales microorganisms. The recombinant nucleic acid molecules of the present invention can be used for the expression of foreign nucleic acids in a Thraustochytriales microorganism as well as for the deletion, mutation, or inactivation of genes in Thraustochytriales microorganisms.
    Type: Application
    Filed: June 21, 2013
    Publication date: November 7, 2013
    Inventors: Paul G. ROESSLER, T. Dave Matthews, Tom M. Ramseier, James G. Metz
  • Publication number: 20130150599
    Abstract: The invention provides recombinant host organisms (e.g., plants) genetically modified with a polyunsaturated fatty acid (PUFA) synthase system and one or more accessory proteins (e.g., PPTase and/or ACoAS) that allow for and/or improve the production of PUFAs in the host organism. The present invention also relates to methods of making and using such organisms (e.g., to obtain PUFAs) as well as products obtained from such organisms (e.g., oil and/or seed).
    Type: Application
    Filed: May 17, 2011
    Publication date: June 13, 2013
    Inventors: Terence A. Walsh, Ann Owens Merlo, Daniel Gachotte, Paul Gordon Roessler, Scott Bevan, Jerry M. Kuner, James G. Metz
  • Patent number: 8426686
    Abstract: Disclosed are novel acyl-CoA synthetases and novel acyltransferases, nucleic acid molecules encoding the same, recombinant nucleic acid molecules and recombinant host cells comprising such nucleic acid molecules, genetically modified organisms (microorganisms and plants) comprising the same, and methods of making and using the same. Also disclosed are genetically modified organisms (e.g., plants, microorganisms) that have been genetically modified to express a PKS-like system for the production of PUFAs (a PUFA PKS system or PUFA synthase), wherein the organisms have been modified to express an acyl-CoA synthetase, to express an acyl transferase, to delete or inactivate a fatty acid synthase (FAS) expressed by the organism, to reduce competition for malonyl CoA with the PUFA synthase or to increase the level of malonyl CoA in the organism, and in one aspect, to inhibit KASII or KASIII.
    Type: Grant
    Filed: June 8, 2010
    Date of Patent: April 23, 2013
    Assignee: DSM IP Assets B.V.
    Inventors: James G. Metz, Jerry M. Kuner, James Casey Lippmeier
  • Patent number: 8309796
    Abstract: Disclosed are chimeric polyunsaturated fatty acid (PUFA) polyketide synthase (PKS) proteins and chimeric PUFA PKS systems, including chimeric PUFA PKS proteins and systems derived from Schizochytrium and Thraustochytrium. Disclosed are nucleic acids and proteins encoding such chimeric PUFA PKS proteins and systems, genetically modified organisms comprising such chimeric PUFA PKS proteins and systems, and methods of making and using such chimeric PUFA PKS proteins and systems.
    Type: Grant
    Filed: June 27, 2011
    Date of Patent: November 13, 2012
    Assignee: DSM IP Assets B.V.
    Inventors: Craig A. Weaver, Ross Zirkle, Daniel H. Doherty, James G. Metz
  • Patent number: 8206984
    Abstract: Disclosed are nucleic acid and amino acid sequences for acetolactate synthase, acetolactate synthase regulatory regions, ?-tubulin promoter, a promoter from a Thraustochytriales polyketide synthase (PKS) system, and fatty acid desaturase promoter, each from a Thraustochytriales microorganism. Also disclosed are recombinant vectors useful for transformation of Thraustochytriales microorganisms, as well as a method of transformation of Thraustochytriales microorganisms. The recombinant nucleic acid molecules of the present invention can be used for the expression of foreign nucleic acids in a Thraustochytriales microorganism as well as for the deletion, mutation, or inactivation of genes in Thraustochytriales microorganisms.
    Type: Grant
    Filed: December 22, 2004
    Date of Patent: June 26, 2012
    Assignee: Merck Biosciences Corporation
    Inventors: Paul G. Roessler, T. Dave Matthews, Tom M. Ramseier, James G. Metz
  • Publication number: 20120021470
    Abstract: Disclosed are chimeric polyunsaturated fatty acid (PUFA) polyketide synthase (PKS) proteins and chimeric PUFA PKS systems, including chimeric PUFA PKS proteins and systems derived from Schizochytrium and Thraustochytrium. Disclosed are nucleic acids and proteins encoding such chimeric PUFA PKS proteins and systems, genetically modified organisms comprising such chimeric PUFA PKS proteins and systems, and methods of making and using such chimeric PUFA PKS proteins and systems.
    Type: Application
    Filed: June 27, 2011
    Publication date: January 26, 2012
    Applicant: Martek Biosciences Corporation
    Inventors: Craig A. WEAVER, Ross Zirkle, Daniel H. Doherty, James G. Metz
  • Publication number: 20110250342
    Abstract: Disclosed are the complete polyunsaturated fatty acid (PUFA) polyketide synthase (PKS) systems from Schizochytrium, and biologically active fragments and homologues thereof. More particularly, this invention relates to nucleic acids encoding such PUFA PKS systems, to proteins and domains thereof that comprise such PUFA PKS systems, to genetically modified organisms (plants and microorganisms) comprising such PUFA PKS systems, and to methods of making and using the PUFA PKS systems disclosed herein. This invention also relates to genetically modified plants and microorganisms and methods to efficiently produce lipids enriched in various polyunsaturated fatty acids (PUFAs) as well as other bioactive molecules by manipulation of a PUFA polyketide synthase (PKS) system.
    Type: Application
    Filed: January 18, 2011
    Publication date: October 13, 2011
    Applicant: Martek Biosciences Corporation
    Inventors: James G. Metz, James H. Flatt, Jerry M. Kuner, William R. Barclay
  • Patent number: 8003772
    Abstract: Disclosed are chimeric polyunsaturated fatty acid (PUFA) polyketide synthase (PKS) proteins and chimeric PUFA PKS systems, including chimeric PUFA PKS proteins and systems derived from Schizochytrium and Thraustochytrium. Disclosed are nucleic acids and proteins encoding such chimeric PUFA PKS proteins and systems, genetically modified organisms comprising such chimeric PUFA PKS proteins and systems, and methods of making and using such chimeric PUFA PKS proteins and systems.
    Type: Grant
    Filed: May 16, 2007
    Date of Patent: August 23, 2011
    Assignee: Martek Biosciences Corporation
    Inventors: Craig A. Weaver, Ross Zirkle, Daniel H. Doherty, James G. Metz