Patents by Inventor James J. Troy

James J. Troy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10416836
    Abstract: Systems and methods for supplying an open interface (e.g., web pages) for viewpoint navigation control of a three-dimensional (3-D) visualization of an object that is simple to create and fast and easy to use. This viewpoint navigation control application allows users to control the viewpoint in a 3-D environment by interacting with (e.g., clicking on) a 2-D hyperlink layout within a web browser (or other 2-D viewer with hyperlink capability). Position and orientation data for a selected viewpoint are transferred as part of a command message sent to the 3-D visualization application through an application programming interface when users select a hyperlink from a web page displayed by the 2-D layout application. The 3-D visualization application then retrieves data and displays a view of at least a portion of the 3-D model of the object with the predefined viewpoint specified in the command message.
    Type: Grant
    Filed: July 11, 2016
    Date of Patent: September 17, 2019
    Assignee: The Boeing Company
    Inventors: James J. Troy, Katherine I. Meza
  • Patent number: 10409252
    Abstract: Situational-awareness controllers and methods to increase situational-awareness for an actor associated with a triggering event are described. An example method includes in response to receiving a notification of a triggering event generated by at least one sensor, a computing device accessing information that includes related to an actor associated with the triggering event. The computing device correlates the information to a compilation of historical information by (i) determining whether the actor's location is associated with one or more safety events stored as part of the compilation of historical information and (ii) determining a risk level of the actor based on whether the one or more associated safety events occurred within a predetermined range of time from the time associated with the triggering event. The computing device generates a command based on a result of the correlating and sends the command to at least one controllable device.
    Type: Grant
    Filed: May 12, 2017
    Date of Patent: September 10, 2019
    Assignee: The Boeing Company
    Inventors: Gary E. Georgeson, James J. Troy, Scott W. Lea, Daniel J. Wright
  • Publication number: 20190265721
    Abstract: A method for navigating a sensor-equipped mobile platform through an through an environment to a destination, the method including: capturing a first image in a first state of illumination; capturing a second image in a second state of illumination; generating a difference image from said first image and said second image; locating an imaging target based on said difference image, said imaging target including a machine-readable code embedded therein, said machine-readable code including navigation vector data; extracting said navigation vector data from said machine-readable code; and using said extracted navigation vector data to direct the navigation of the mobile platform through the environment to a destination.
    Type: Application
    Filed: February 26, 2018
    Publication date: August 29, 2019
    Applicant: The Boeing Company
    Inventors: James J. Troy, Gary E. Georgeson, Scott W. Lea
  • Publication number: 20190256226
    Abstract: An aircraft inspection system is configured to inspect one or more components of an aircraft before a flight. The aircraft inspection system includes an inspection robot that is configured to inspect the component(s) of the aircraft. The inspection robot includes a conveying sub-system that is configured to efficiently move the inspection robot to different locations, and a sensing sub-system including one or more sensors that are configured to sense one or more characteristics of the component(s) during an inspection. The sensing sub-system is configured to record the characteristic(s) as inspection data.
    Type: Application
    Filed: February 19, 2018
    Publication date: August 22, 2019
    Applicant: THE BOEING COMPANY
    Inventors: Alireza Shapoury, James J. Troy, Gary Georgeson, Branko Sarh
  • Publication number: 20190250128
    Abstract: Method and apparatus for enabling ultrasonic inspection of a changing, insufficiently defined or unknown shape (e.g., a variable radius or a noncircular radius caused by the use of soft tooling) at a rate that meets production requirements. The apparatus comprises a linear ultrasonic array (i.e., sensor) incorporated in a toppler, which in turn is slidably supported by an oscillating sensor mechanism carried by a traveling trailer vehicle. As a result of this arrangement, the sensor can undergo a back-and-forth sweeping motion coupled with motion along the spar radius. The sensor is further able to displace radially relative to a sweep pivot axis and rotate (hereinafter “topple”) about a topple pivot axis. In this manner, the orientation of the sensor can adjust to the contour of the inspected surface as the sensor scans.
    Type: Application
    Filed: April 19, 2019
    Publication date: August 15, 2019
    Applicant: The Boeing Company
    Inventors: William P. Motzer, James C. Kennedy, Steven Ray Walton, James J. Troy
  • Patent number: 10380469
    Abstract: Systems and methods for determining locations of a device in an environment where features are present. Passive code pattern markers are used as unique location landmarks to provide on-demand location information to the user of the device in an abstract, landmark-based reference system that can then be mapped into an underlying physical 3-D coordinate system to give location coordinates that can be used by other tools to determine a viewpoint. For example, a 3-D visualization system can be configured to set a viewpoint so that an image concurrently generated by a computer system presents a scene which approximates the scene being viewed by the user in the physical world at that moment in time.
    Type: Grant
    Filed: July 12, 2016
    Date of Patent: August 13, 2019
    Assignee: The Boeing Company
    Inventors: James J. Troy, Christopher D. Esposito
  • Publication number: 20190242971
    Abstract: Systems and methods for performing relative object localization using a local positioning system. The process in accordance with one embodiment solves the problem of determining the location (i.e., the position and orientation) of an object relative to a previous location of the object, or relative to another object, without the need for known 3-D data point positions in the environment. The process in accordance with another embodiment solves the problem of determining the location of the measurement instrument relative to a previous location of the measurement instrument using visible feature points on a target object as a reference, again without the need for known 3-D data point positions. The process in accordance with a further embodiment is capable of determining the locations of multiple objects relative to each other.
    Type: Application
    Filed: April 17, 2019
    Publication date: August 8, 2019
    Applicant: The Boeing Company
    Inventors: James J. Troy, Scott W. Lea, Gary E. Georgeson
  • Patent number: 10347109
    Abstract: An automated human personnel fall arresting system including a holonomic base platform, a boom arm movably mounted to and depending from the base platform, at least a portion of the arm being movable in three degrees-of-freedom relative to the base platform, a tether supported by the arm, an operator harness coupled to the tether so as to be dependent from the arm, at least one sensor disposed on the arm and configured to sense movement of the portion of the arm in two degrees-of-freedom of the three degrees-of-freedom, and a controller mounted to the base platform and communicably coupled to the at least one sensor, the controller being configured to automatically control position of the base platform in two orthogonal translational directions and one rotation direction controlled independently from translation, relative to the operator harness, based on signals from the at least one sensor.
    Type: Grant
    Filed: November 8, 2016
    Date of Patent: July 9, 2019
    Assignee: The Boeing Company
    Inventors: James J. Troy, Gary E. Georgeson, Scott W. Lea, Daniel J. Wright, Karl E. Nelson
  • Publication number: 20190186470
    Abstract: Systems and methods for the automated non-destructive inspection of wind turbine blades. A motor-driven track that conforms to the shape of the blade moves along its length. At each spanwise position, the motor-driven track is stopped and then while the motor-driven track is stationary, any one of various types of NDI sensors is moved along the track to collect inspection data on the structure. The track is either segmented or flexible in order to conform to the cross-sectional profile of the blade. In addition, means for tracking the spanwise motion of the motor-driven track along the blade are provided. Optionally, means for avoiding protrusions on the blade that may be in the way during scanning are provided.
    Type: Application
    Filed: December 14, 2017
    Publication date: June 20, 2019
    Applicant: The Boeing Company
    Inventors: Gary E. Georgeson, Joseph L. Hafenrichter, James J. Troy
  • Publication number: 20190188900
    Abstract: A method is provided that includes generating a report template usable to produce a report to convey information about a structural product or one or more of a plurality of parts thereof, rendering for display. A model of the structural product is observed from a home viewpoint. Input is received to navigate the model to a part selected from the plurality of parts, the model at the navigated viewpoint including information for the part selected from the plurality of parts. A command string is generated that includes information specifying the navigated viewpoint. The command string is output to a recorder configured to record the command string on at least one of a physical medium or to an electronic document in which the command string is thereby included, the command string capable of being machine-read to automatically restore the model at the navigated viewpoint.
    Type: Application
    Filed: December 14, 2017
    Publication date: June 20, 2019
    Inventors: James J. Troy, Todd J. Sleeman, Nikoli Prazak, William McGarry, Aaron A. Dost, David Michael Roni
  • Publication number: 20190173574
    Abstract: Systems and methods for high-speed non-destructive inspection of a half- or full-barrel-shaped workpiece, such as a barrel-shaped section of an aircraft fuselage. Such workpieces can be scanned externally using a mobile (e.g., translating) arch gantry system comprising a translatable arch frame disposed outside the fuselage section, a carriage that can travel along a curved track carried by the arch frame, a radially inward-extending telescopic arm having a proximal end fixedly coupled to the carriage, and an NDI sensor unit coupled to a distal end of the telescoping arm. The stiffeners of the fuselage sections can be scanned using a mobile scanner platform disposed inside the fuselage section, which platform comprises a radially outward-extending telescopic arm rotatably coupled to a mobile (e.g., holonomic or linear motion) platform and an NDI sensor unit coupled to a distal end of the telescoping arm.
    Type: Application
    Filed: February 5, 2019
    Publication date: June 6, 2019
    Applicant: The Boeing Company
    Inventors: Gary E. Georgeson, Barry A. Fetzer, James J. Troy, Scott W. Lea
  • Patent number: 10310054
    Abstract: Systems and methods for performing relative object localization using a local positioning system. The process in accordance with one embodiment solves the problem of determining the location (i.e., the position and orientation) of an object relative to a previous location of the object, or relative to another object, without the need for known 3-D data point positions in the environment. The process in accordance with another embodiment solves the problem of determining the location of the measurement instrument relative to a previous location of the measurement instrument using visible feature points on a target object as a reference, again without the need for known 3-D data point positions. The process in accordance with a further embodiment is capable of determining the locations of multiple objects relative to each other.
    Type: Grant
    Filed: March 21, 2014
    Date of Patent: June 4, 2019
    Assignee: The Boeing Company
    Inventors: James J. Troy, Scott W. Lea, Gary E. Georgeson
  • Patent number: 10289263
    Abstract: A method is provided that includes rendering for display, a digital three-dimensional (3D) model of a structural product composed of a plurality of parts, with the digital 3D model being observed from a home viewpoint. Input is received to navigate the digital 3D model to a part of the plurality of parts, observation of the digital 3D model being moved from the home viewpoint to a navigated viewpoint. A digital label is generated that includes information specifying the navigated viewpoint and includes information for the part. The digital label may be output to a label recorder configured to record the digital label on a physical medium and thereby produce a corresponding physical label. At least the navigated viewpoint of the digital 3D model in the digital label and corresponding physical label are in a machine-readable format and capable of being machine-read to automatically restore the digital 3D model at the navigated viewpoint.
    Type: Grant
    Filed: June 10, 2016
    Date of Patent: May 14, 2019
    Assignee: The Boeing Company
    Inventors: James J. Troy, Kevin Puterbaugh, William E. Ward, John C. Gass, Michael P. Sciarra, Katherine I. Meza, Steven E. Malarkey, Nikoli E. Prazak, William J. McGarry, William J. Brown, Jeffery A. Bus
  • Patent number: 10288585
    Abstract: Method and apparatus for enabling ultrasonic inspection of a changing, insufficiently defined or unknown shape (e.g., a variable radius or a noncircular radius caused by the use of soft tooling) at a rate that meets production requirements. The apparatus comprises a linear ultrasonic array (i.e., sensor) incorporated in a toppler, which in turn is slidably supported by an oscillating sensor mechanism carried by a traveling trailer vehicle. As a result of this arrangement, the sensor can undergo a back-and-forth sweeping motion coupled with motion along the spar radius. The sensor is further able to displace radially relative to a sweep pivot axis and rotate (hereinafter “topple”) about a topple pivot axis. In this manner, the orientation of the sensor can adjust to the contour of the inspected surface as the sensor scans.
    Type: Grant
    Filed: September 29, 2015
    Date of Patent: May 14, 2019
    Assignee: The Boeing Company
    Inventors: William P. Motzer, James C. Kennedy, Steven Ray Walton, James J. Troy
  • Patent number: 10286556
    Abstract: A method and apparatus for performing an operation on a workpiece using a multi-axis compliant end-effector for attachment to a robotic device. The end-effector is positioned at a nominal location of a workpiece feature on which the operation is to be performed. The end-effector is passively aligned with the workpiece feature by contacting the end-effector with the workpiece feature. The operation is performed on the workpiece feature in response to aligning the end effector with the workpiece feature.
    Type: Grant
    Filed: October 16, 2016
    Date of Patent: May 14, 2019
    Assignee: The Boeing Company
    Inventors: James J. Troy, Daniel J. Wright, Scott W. Lea
  • Patent number: 10261747
    Abstract: Systems and methods for synchronized display of visualizations of three-dimensional (3-D) models and video images of aircraft for use in assembly of an aircraft. A video display process is configured to process the video image data so that the video images will have a user-selected viewpoint when displayed. In one embodiment, the user selects a virtual view direction and a smaller field-of-view from a full 360-degree field-of-view. A client request process is configured to construct and transmit a command data string containing encoded data specifying parameter values of the viewpoint representation formatted for 3-D model visualization. A server response process is configured to receive and decode the command data string into the specified parameter values representing the user-selected viewpoint for three-dimensional model visualization. A 3-D model visualization process is configured to process the 3-D model data so that 3-D model visualizations will have the user-selected viewpoint when displayed.
    Type: Grant
    Filed: January 23, 2018
    Date of Patent: April 16, 2019
    Assignee: The Boeing Company
    Inventors: James J. Troy, Jeremiah K. Scott, Katherine I. Meza
  • Publication number: 20190107382
    Abstract: Systems and methods that provide a framework for location tracking of a movable target component or device (e.g., an automated device or a hand-operated device) to accurately cover an area of interest along a specified path or in a specified region. Grid patterns are projected onto a surface of a workpiece or a part. The projected grid lines may be straight or curved. Straight grid lines can be parallel or intersecting. The grid pattern may include a path to be followed. The lines of the projected grid pattern are detected by a grid detection sensor which is mounted onboard the movable target component or device. Information from the grid detection sensor is fed to a location mapping program. The systems and methods also enable navigation for use in automated and autonomous manufacturing and maintenance operations, as well as other tracking-based applications.
    Type: Application
    Filed: November 30, 2018
    Publication date: April 11, 2019
    Applicant: The Boeing Company
    Inventors: Gary E. Georgeson, James J. Troy, Scott W. Lea
  • Publication number: 20190098221
    Abstract: Systems and methods for measuring the distance to a target object and acquiring three-dimensional coordinates, scale information, and point-to-point distance information for that target object in an environment using a remotely operated cable-suspended platform. The system uses on-board sensors and processing techniques to provide discrete or continuous measurements of the distances between points on a target object or the scale of the target object. The addition of on-board three-dimensional measurement capabilities to cable-suspended platforms enables these systems to acquire three-dimensional position data defined in the coordinate system of the environment, determine distances between objects or between points on the same object. The system can also be used to determine the scale factors of items in images captured by a camera carried by the cable-suspended platform, in the course of performing metrology-related tasks.
    Type: Application
    Filed: December 6, 2017
    Publication date: March 28, 2019
    Applicant: The Boeing Company
    Inventors: James J. Troy, Gary E. Georgeson, Scott W. Lea
  • Publication number: 20190094149
    Abstract: Systems and methods for measuring the distance to a target object and acquiring scale and point-to-point distance information for that target object in an environment using a remotely operated flying platform, such as an unmanned aerial vehicle (UAV). The system uses on-board sensors and processing techniques to provide discrete or continuous measurements of the distances between points on a target object or the scale of the target object. The addition of on-board three-dimensional measurement capabilities to UAVs (or other flying platforms) allows the collection of distance data. Having this capability enables these systems to acquire distances between points on a single object, such as determining the true scale factors of items in images captured by the UAV, in the course of performing metrology-related tasks.
    Type: Application
    Filed: September 25, 2017
    Publication date: March 28, 2019
    Applicant: The Boeing Company
    Inventors: James J. Troy, Gary E. Georgeson, Scott W. Lea
  • Patent number: 10239641
    Abstract: Systems and methods for high-speed non-destructive inspection of a half- or full-barrel-shaped workpiece, such as a barrel-shaped section of an aircraft fuselage. Such workpieces can be scanned externally using a mobile (e.g., translating) arch gantry system comprising a translatable arch frame disposed outside the fuselage section, a carriage that can travel along a curved track carried by the arch frame, a radially inward-extending telescopic arm having a proximal end fixedly coupled to the carriage, and an NDI sensor unit coupled to a distal end of the telescoping arm. The stiffeners of the fuselage sections can be scanned using a mobile scanner platform disposed inside the fuselage section, which platform comprises a radially outward-extending telescopic arm rotatably coupled to a mobile (e.g., holonomic or linear motion) platform and an NDI sensor unit coupled to a distal end of the telescoping arm.
    Type: Grant
    Filed: November 10, 2017
    Date of Patent: March 26, 2019
    Assignee: The Boeing Company
    Inventors: Gary E. Georgeson, Barry A. Fetzer, James J. Troy, Scott W. Lea