Patents by Inventor James K. Carney

James K. Carney has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9867990
    Abstract: Aspects of the present disclosure include a medical device system including an implantable medical device and an external device with three or more electrodes configured to contact a patient's skin. The external device either transmits or receives a test signal to or from the implantable medical device using a plurality of possible receive dipoles, where each possible receive dipole is formed by a pair of electrodes. A signal quality monitor, either at the implantable medical device or at the external device, measures a signal quality for the possible receive dipoles.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: January 16, 2018
    Assignee: Medtronic, Inc.
    Inventors: Can Cinbis, David A. Anderson, Michael A. Reinert, Xiaonan Shen, James K. Carney, Michael B. Terry
  • Patent number: 9844675
    Abstract: An implantable medical device comprising a signal generator configured to generate and deliver anti-tachyarrhythmia pacing (ATP) to a heart of a patient and processing circuitry. The processing circuitry is configured to detect an enable event, responsive to detecting the enable event, enable the delivery of ATP by the signal generator, detect a disable event indicating that another implantable medical device cannot be relied upon to deliver an anti-tachyarrhythmia shock, and responsive to detecting the disable event, disable delivery of ATP.
    Type: Grant
    Filed: April 29, 2016
    Date of Patent: December 19, 2017
    Assignee: Medtronic, Inc.
    Inventors: Scott A. Hareland, James K. Carney, James D. Reinke, Jon D. Schell, Barbara J. Schmid
  • Patent number: 9808632
    Abstract: An implantable medical device comprises a communication module that comprises at least one of a receiver module and a transmitter module. The receiver module is configured to both receive from an antenna and demodulate an RF telemetry signal, and receive from a plurality of electrodes and demodulate a tissue conduction communication (TCC) signal. The transmitter module is configured to modulate and transmit both an RF telemetry signal via the antenna and a TCC signal via the plurality of electrodes. The RF telemetry signal and the TCC signal are both within a predetermined band for RF telemetry communication. In some examples, the IMD comprises a switching module configured to selectively couple one of the plurality of electrodes and the antenna to the receiver module or transmitter module.
    Type: Grant
    Filed: January 23, 2015
    Date of Patent: November 7, 2017
    Assignee: Medtronic, Inc.
    Inventors: James D. Reinke, James K. Carney, Can Cinbis, David J. Peichel, Joseph Ballis
  • Publication number: 20170312514
    Abstract: An implantable medical device comprising a signal generator configured to generate and deliver anti-tachyarrhythmia pacing (ATP) to a heart of a patient and processing circuitry. The processing circuitry is configured to detect an enable event, responsive to detecting the enable event, enable the delivery of ATP by the signal generator, detect a disable event indicating that another implantable medical device cannot be relied upon to deliver an anti-tachyarrhythmia shock, and responsive to detecting the disable event, disable delivery of ATP.
    Type: Application
    Filed: April 29, 2016
    Publication date: November 2, 2017
    Inventors: Scott A. Hareland, James K. Carney, James D. Reinke, Jon D. Schell, Barbara J. Schmid
  • Publication number: 20170232261
    Abstract: An implantable medical device system is configured to deliver cardiac pacing by receiving a cardiac electrical signal by sensing circuitry of a first device via a plurality of sensing electrodes, identifying by a control module of the first device a first cardiac event from the cardiac electrical signal, setting a first pacing interval in response to identifying the first cardiac event, controlling a power transmitter of the first device to transmit power upon expiration of the first pacing interval, receiving the transmitted power by a power receiver of a second device; and delivering at least a portion of the received power to a patient's heart via a first pacing electrode pair of the second device coupled to the power receiver.
    Type: Application
    Filed: April 28, 2016
    Publication date: August 17, 2017
    Inventors: Robert W. Stadler, Zhongping Yang, Sarah A. Audet, James K. Carney, James D. Reinke, Andrew J. Ries, John D. Wahlstrand
  • Patent number: 9731138
    Abstract: An implantable medical device system is configured to deliver cardiac pacing by receiving a cardiac electrical signal by sensing circuitry of a first device via a plurality of sensing electrodes, identifying by a control module of the first device a first cardiac event from the cardiac electrical signal, setting a first pacing interval in response to identifying the first cardiac event, controlling a power transmitter of the first device to transmit power upon expiration of the first pacing interval, receiving the transmitted power by a power receiver of a second device; and delivering at least a portion of the received power to a patient's heart via a first pacing electrode pair of the second device coupled to the power receiver.
    Type: Grant
    Filed: April 28, 2016
    Date of Patent: August 15, 2017
    Assignee: Medtronic, Inc.
    Inventors: Robert W Stadler, Zhongping Yang, Sarah A Audet, James K Carney, James D Reinke, Andrew J Ries, John D Wahlstrand
  • Patent number: 9694186
    Abstract: A method for adjusting a pacing rate in a dual-chamber, leadless pacemaker implanted in a heart may involve determining, with a leadless atrial pacemaker implanted in an atrium of the heart, that an intrinsic atrial contraction rate of the atrium is faster than a ventricular contraction rate, transmitting a first signal from the atrial pacemaker to a leadless ventricular pacemaker implanted in a ventricle of the heart to increase a ventricular pacing rate of the ventricular pacemaker, receiving the transmitted first signal with the ventricular pacemaker, and increasing the ventricular pacing rate, based on the received first signal.
    Type: Grant
    Filed: October 9, 2014
    Date of Patent: July 4, 2017
    Assignee: Medtronic, Inc.
    Inventors: James K. Carney, Saul E. Greenhut
  • Patent number: 9687654
    Abstract: An implantable medical device system including an atrial pacemaker and a ventricular pacemaker is configured to deliver dual chamber pacing in the presence of atrioventricular block. In response to detecting the AV block, the atrial pacemaker may establish a limited number of selectable pacing rates. The atrial pacemaker selects a rate from the limited number of selectable pacing rates and adjusts the atrial pacing rate to the selected rate. The ventricular pacemaker is configured to establish a ventricular pacing rate that is equivalent to the selected rate in response to detecting the AV block. Other examples are described herein.
    Type: Grant
    Filed: April 23, 2015
    Date of Patent: June 27, 2017
    Assignee: Medtronic, Inc.
    Inventors: Todd J Sheldon, James K Carney, Saul E Greenhut
  • Patent number: 9669224
    Abstract: A medical device system is configured to sense physiological events by a first device and control a transducer to emit trigger signals in response to the sensed physiological events. A second device detects the trigger signals and delivers therapeutic stimulation pulses in response to the trigger signals. The therapeutic stimulation pulses have a combined total time duration over the sensed physiological events that is greater than the combined total time duration of the trigger signals.
    Type: Grant
    Filed: April 23, 2015
    Date of Patent: June 6, 2017
    Assignee: Medtronic, Inc.
    Inventors: James K Carney, Can Cinbis, Jonathan L Kuhn
  • Patent number: 9636059
    Abstract: A medical device for sensing cardiac events that includes a plurality of light sources capable of emitting light at a plurality of wavelengths, and a detector to detect the emitted light. A processor determines a plurality of light measurements in response to the emitted light detected by the detector, updates, for each of the plurality of wavelengths, a first normalization coefficient and a second normalization coefficient in response to the detected emitted light, and adjusts the determined plurality of light measurements in response to the first normalization coefficient and the second normalization coefficient.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: May 2, 2017
    Assignee: Medtronic, Inc.
    Inventors: Can Cinbis, James K. Carney
  • Patent number: 9636511
    Abstract: An implantable cardioverter defibrillator (ICD) configured to transmit a tissue conduction communication (TCC) signal includes a TCC transmitter module configured to generate the TCC signal and transmit the TCC signal via a plurality of electrodes. The TCC signal comprises a biphasic signal having an amplitude and a frequency, wherein at least one of the amplitude and the frequency are configured to avoid stimulation of tissue of the patient. The TCC transmitter module comprises protection circuitry coupled between a current source and the plurality of electrodes, wherein the protection circuitry is configured to protect the signal generator from an external anti-tachyarrhythmia shock delivered to the patient.
    Type: Grant
    Filed: January 23, 2015
    Date of Patent: May 2, 2017
    Assignee: Medtronic, Inc.
    Inventors: James K. Carney, Joseph Ballis, James D. Reinke, Can Cinbis, Kevin P. Kuehn, Mark A. Griebel
  • Patent number: 9636512
    Abstract: This disclosure provides an extravascular ICD system and method for defibrillating a heart of a patient. The extravascular ICD system includes multiple extravascular electrical stimulation leads or lead segments located in close proximity to one another and having respective defibrillation electrodes. The ICD system utilizes the multiple defibrillation electrodes to form an extravascular electrode vector that may result a reduction in the shock impedance and/or a reduction in the DFT compared to extravascular ICD systems that include only a single extravascular defibrillation electrode. An ICD of the system may, for example, deliver a defibrillation shock using an electrode vector in which a first polarity of the electrode vector is formed by electrically coupling first and second defibrillation electrodes of first and second leads, respectively, to the therapy circuitry and a second polarity of the electrode vector is formed by electrically coupling a housing of the ICD to the therapy circuitry.
    Type: Grant
    Filed: November 4, 2015
    Date of Patent: May 2, 2017
    Assignee: Medtronic, Inc.
    Inventors: Can Cinbis, Vladimir P. Nikolski, Jian Cao, James K. Carney, Melissa G. T. Christie, Richard J. O'Brien, Amy E. Thompson-Nauman
  • Patent number: 9517032
    Abstract: An implantable sensor module and medical device includes a housing having an inner shell having a thickness extending between an inner wall and an outer wall and an outer layer, wherein the inner shell and the outer layer form a substantially flat portion. A shoulder extends adjacent to a diaphragm to extend the outer layer laterally away from a central medial line extending between edges of the diaphragm. A recess portion is formed between the diaphragm and an inner side of the outer layer, and an over-fill channel is formed by the outer layer extending through the outer layer from an opening formed at the outer wall to an opening formed along the inner side of the outer layer extending along the substantially flat portion.
    Type: Grant
    Filed: January 31, 2012
    Date of Patent: December 13, 2016
    Assignee: Medtronic, Inc.
    Inventors: Daniel S. Flo, James K. Carney, Kamal Deep Mothilal, Jon D. Schell
  • Patent number: 9492671
    Abstract: A medical device system is configured to sense a physiological signal by a first device and generate a control signal by the first device in response to the physiological signal. An acoustical emitting device is controlled by the first device to emit an acoustical trigger signal in response to the control signal. A second device detects the acoustical trigger signal and delivers an automatic therapy to a patient in response to detecting the acoustical trigger signal.
    Type: Grant
    Filed: April 23, 2015
    Date of Patent: November 15, 2016
    Assignee: Medtronic, Inc.
    Inventors: Richard J O'Brien, James K Carney, Can Cinbis, Jonathan L Kuhn, Thomas A Anderson, Taylor R Anderson
  • Publication number: 20160310733
    Abstract: An implantable medical device system including an atrial pacemaker and a ventricular pacemaker is configured to deliver dual chamber pacing in the presence of atrioventricular block. In response to detecting the AV block, the atrial pacemaker may establish a limited number of selectable pacing rates. The atrial pacemaker selects a rate from the limited number of selectable pacing rates and adjusts the atrial pacing rate to the selected rate. The ventricular pacemaker is configured to establish a ventricular pacing rate that is equivalent to the selected rate in response to detecting the AV block. Other examples are described herein.
    Type: Application
    Filed: April 23, 2015
    Publication date: October 27, 2016
    Inventors: Todd J. Sheldon, James K. Carney, Saul E. Greenhut
  • Publication number: 20160213265
    Abstract: The present disclosure provides an apparatus and method of detecting ischemia with a pressure sensor. The method can include obtaining a pressure signal and determining a pressure rate of change. The method can also include identifying at least one of impaired relaxation and impaired contractility in order to detect ischemia.
    Type: Application
    Filed: April 4, 2016
    Publication date: July 28, 2016
    Inventors: Sarah A. Audet, James K. Carney, William J. Combs, Tommy D. Bennett, Barbro M.L. Kjellstrom
  • Publication number: 20160213939
    Abstract: An implantable cardioverter defibrillator (ICD) configured to transmit a tissue conduction communication (TCC) signal includes a TCC transmitter module configured to generate the TCC signal and transmit the TCC signal via a plurality of electrodes. The TCC signal comprises a biphasic signal having an amplitude and a frequency, wherein at least one of the amplitude and the frequency are configured to avoid stimulation of tissue of the patient. The TCC transmitter module comprises protection circuitry coupled between a current source and the plurality of electrodes, wherein the protection circuitry is configured to protect the signal generator from an external anti-tachyarrhythmia shock delivered to the patient.
    Type: Application
    Filed: January 23, 2015
    Publication date: July 28, 2016
    Inventors: James K. CARNEY, Joseph BALLIS, James D. REINKE, Can CINBIS, Kevin P. KUEHN, Mark A. GRIEBEL
  • Publication number: 20160213937
    Abstract: An implantable medical device comprises a communication module that comprises at least one of a receiver module and a transmitter module. The receiver module is configured to both receive from an antenna and demodulate an RF telemetry signal, and receive from a plurality of electrodes and demodulate a tissue conduction communication (TCC) signal. The transmitter module is configured to modulate and transmit both an RF telemetry signal via the antenna and a TCC signal via the plurality of electrodes. The RF telemetry signal and the TCC signal are both within a predetermined band for RF telemetry communication. In some examples, the IMD comprises a switching module configured to selectively couple one of the plurality of electrodes and the antenna to the receiver module or transmitter module.
    Type: Application
    Filed: January 23, 2015
    Publication date: July 28, 2016
    Inventors: James D. REINKE, James K. CARNEY, Can CINBIS, David J. PEICHEL, Joseph BALLIS
  • Patent number: 9399139
    Abstract: A medical device system including an pacemaker implantable in a chamber of a patient's heart is configured to sense near field events from a cardiac electrical signal, establish a lower rate interval to control a rate of delivery of pacing pulses and schedule a first pacing pulse by starting a pacing escape interval set equal to the lower rate interval. The pacemaker withholds the scheduled pacing pulse in response to sensing a near-field event during the pacing escape interval and schedules a next pacing pulse to be delivered at the lower rate interval from a time that the pacing escape interval is scheduled to expire.
    Type: Grant
    Filed: December 22, 2014
    Date of Patent: July 26, 2016
    Assignee: Medtronic, Inc.
    Inventors: Wade M. Demmer, Saul E. Greenhut, Todd J. Sheldon, David A. Anderson, Karen J. Kleckner, James K. Carney
  • Patent number: 9393424
    Abstract: A medical device system including a pacemaker implantable in an atrial chamber of a patient's heart is configured to sense near field atrial events from a cardiac signal received by a sensing module of the pacemaker and to sense far field ventricular events. The pacemaker is configured to establish an atrial lower rate interval to control a rate of delivery of atrial pacing pulses, determine a rate of the far field ventricular events sensed by the sensing module, determine an atrial event rate, compare the rate of the sensed far field ventricular events to the atrial event rate, and adjust the atrial lower rate interval in response to the comparison.
    Type: Grant
    Filed: December 22, 2014
    Date of Patent: July 19, 2016
    Assignee: Medtronic, Inc.
    Inventors: Wade M. Demmer, Saul E. Greenhut, Todd J. Sheldon, David A. Anderson, Karen J. Kleckner, James K. Carney