Patents by Inventor James M. Bing

James M. Bing has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240124934
    Abstract: The invention provides DNA compositions that relate to transgenic insect resistant maize plants. Also provided are assays for detecting the presence of the maize DAS-59122-7 event based on the DNA sequence of the recombinant construct inserted into the maize genome and the DNA sequences flanking the insertion site. Kits and conditions useful in conducting the assays are provided.
    Type: Application
    Filed: December 7, 2023
    Publication date: April 18, 2024
    Inventors: James Wayne Bing, Robert F. Cressman, Manju Gupta, Salim M. Hakimi, David Hondred, Todd L. Krone, Mary E. Hartnett Locke, Abigail K. Luckring, Sandra E. Meyer, Daniel Moellenbeck, Kenneth Edwin Narva, Paul D. Olson, Craig D. Sanders, Jimei Wang, Jian Zhang, Gan-Yuan Zhong
  • Publication number: 20200257019
    Abstract: In an embodiment, measurements are simulated of direct normal irradiance, diffuse horizontal and global horizontal irradiance from groups of two or more photovoltaic arrays and/or irradiance sensors which are located in close proximity to each other and which have different tilt and azimuth angles. Irradiance measurements derived from solar power system power measurements are combined with measurements made by irradiance sensors to synthesize an image of ground level global horizontal irradiance which can be used to create a vector describing motion of that image of irradiance in an area of interest. A sequence of these irradiance images can be transformed into a time series from which a motion vector can be derived. The motion vector can be applied to a current image of ground level irradiance and that image can be projected to a future point in time to provide a solar radiation forecast. These forecasts can be converted into forecasts of solar power system power in the area of interest.
    Type: Application
    Filed: April 24, 2020
    Publication date: August 13, 2020
    Inventor: James M. Bing
  • Patent number: 10663620
    Abstract: In an embodiment, measurements are simulated of direct normal irradiance, diffuse horizontal and global horizontal irradiance from groups of two or more photovoltaic arrays and/or irradiance sensors which are located in close proximity to each other and which have different tilt and azimuth angles. Irradiance measurements derived from solar power system power measurements are combined with measurements made by irradiance sensors to synthesize an image of ground level global horizontal irradiance which can be used to create a vector describing motion of that image of irradiance in an area of interest. A sequence of these irradiance images can be transformed into a time series from which a motion vector can be derived.
    Type: Grant
    Filed: May 30, 2013
    Date of Patent: May 26, 2020
    Assignee: NEO Virtus Engineering, Inc.
    Inventor: James M. Bing
  • Publication number: 20150177415
    Abstract: In an embodiment, measurements are simulated of direct normal irradiance, diffuse horizontal and global horizontal irradiance from groups of two or more photovoltaic arrays and/or irradiance sensors which are located in close proximity to each other and which have different tilt and azimuth angles. 5 Irradiance measurements derived from solar power system power measurements are combined with measurements made by irradiance sensors to synthesize an image of ground level global horizontal irradiance which can be used to create a vector describing motion of that image of irradiance in an area of interest. A sequence of these irradiance images can be transformed into a time series from 10 which a motion vector can be derived.
    Type: Application
    Filed: May 30, 2013
    Publication date: June 25, 2015
    Inventor: James M. Bing
  • Patent number: 8527398
    Abstract: A method for hedging energy sales or purchases in a short-term future or day-ahead market includes determining an historical performance of a regional net energy forecasting methodology for a facility or facilities which have solar energy generating systems in a geographical region. The method further includes estimating a difference between the maximum cost of energy in a spot market and an energy trader's minimum price of energy for each hour bid in the short-term future or day-ahead market, determining a risk factor associated with energy sales or purchases from the historical performance and the estimated difference, and purchasing or selling options to buy energy at the previous day's day-ahead market price based on the determined risk factor.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: September 3, 2013
    Assignee: NEO Virtus Engineering, Inc.
    Inventor: James M. Bing
  • Publication number: 20130013486
    Abstract: A method for hedging energy sales or purchases in a short-term future or day-ahead market includes determining an historical performance of a regional net energy forecasting methodology for a facility or facilities which have solar energy generating systems in a geographical region. The method further includes estimating a difference between the maximum cost of energy in a spot market and an energy trader's minimum price of energy for each hour bid in the short-term future or day-ahead market, determining a risk factor associated with energy sales or purchases from the historical performance and the estimated difference, and purchasing or selling options to buy energy at the previous day's day-ahead market price based on the determined risk factor.
    Type: Application
    Filed: September 14, 2012
    Publication date: January 10, 2013
    Inventor: James M. Bing
  • Patent number: 8280799
    Abstract: A method of anticipating a short-term future electrical energy demand of an energy trader's customers includes calculating a short-term future net electrical energy demand required to meet the demand of customer facilities which have a solar energy generating system or systems in a geographic region. The method further includes determining a resulting difference, expressed as a shortfall or surplus, between the short-term future net electrical energy demand and an amount of electrical energy purchased in long-term contracts for the supply of the customer facilities, and bargaining a buying price or a selling price for energy in a short-term future or day-ahead market based on the shortfall or surplus. A method for hedging energy sales or purchases in a short-term future or day-ahead market includes determining an historical performance of a regional net energy forecasting methodology for a facility or facilities which have solar energy generating systems in a geographical region.
    Type: Grant
    Filed: July 1, 2009
    Date of Patent: October 2, 2012
    Assignee: New Virtus Engineering, Inc.
    Inventor: James M. Bing
  • Publication number: 20100017341
    Abstract: A method of anticipating a short-term future electrical energy demand of an energy trader's customers includes calculating a short-term future net electrical energy demand required to meet the demand of customer facilities which have a solar energy generating system or systems in a geographic region. The method further includes determining a resulting difference, expressed as a shortfall or surplus, between the short-term future net electrical energy demand and an amount of electrical energy purchased in long-term contracts for the supply of the customer facilities, and bargaining a buying price or a selling price for energy in a short-term future or day-ahead market based on the shortfall or surplus. A method for hedging energy sales or purchases in a short-term future or day-ahead market includes determining an historical performance of a regional net energy forecasting methodology for a facility or facilities which have solar energy generating systems in a geographical region.
    Type: Application
    Filed: July 1, 2009
    Publication date: January 21, 2010
    Inventor: James M. Bing
  • Patent number: 7580817
    Abstract: A system, method and computer program product to assist in managing the physical plant mechanisms and market finances for a deregulated electricity grid or regulated utility grid, populated with solar electric generation capacity. This system provides tools to assist grid operators in the scheduling and dispatch of generation resources in an electrical grid populated with solar electric generation capacity, a week in advance, on an hourly basis. It also provides tools to assist companies engaged in generation, distribution and energy marketing, in the electrical power industry, to manage their contractual supply obligations in the day-ahead hourly wholesale market and the spot market, in an electrical grid populated with solar electric generation capacity. This process can also be used to predict solar loading of building structures, using forecast irradiance data as inputs to common building energy modeling programs, a week in advance, on an hourly basis.
    Type: Grant
    Filed: August 19, 2004
    Date of Patent: August 25, 2009
    Assignee: New Energy Options, Inc.
    Inventor: James M. Bing