Patents by Inventor James Metz

James Metz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080005811
    Abstract: Disclosed are the complete polyunsaturated fatty acid (PUFA) polyketide synthase (PKS) systems from Schizochytrium, and biologically active fragments and homologues thereof. More particularly, this invention relates to nucleic acids encoding such PUFA PKS systems, to proteins and domains thereof that comprise such PUFA PKS systems, to genetically modified organisms (plants and microorganisms) comprising such PUFA PKS systems, and to methods of making and using the PUFA PKS systems disclosed herein. This invention also relates to genetically modified plants and microorganisms and methods to efficiently produce lipids enriched in various polyunsaturated fatty acids (PUFAs) as well as other bioactive molecules by manipulation of a PUFA polyketide synthase (PKS) system.
    Type: Application
    Filed: January 29, 2007
    Publication date: January 3, 2008
    Applicant: MARTEK BIOSCIENCES CORPORATION
    Inventors: James Metz, James Flatt, Jerry Kuner, William Barclay
  • Publication number: 20070270494
    Abstract: Disclosed are novel acyl-CoA synthetases and novel acyltransferases, nucleic acid molecules encoding the same, recombinant nucleic acid molecules and recombinant host cells comprising such nucleic acid molecules, genetically modified organisms (microorganisms and plants) comprising the same, and methods of making and using the same. Also disclosed are genetically modified organisms (e.g., plants, microorganisms) that have been genetically modified to express a PKS-like system for the production of PUFAs (a PUFA PKS system or PUFA synthase), wherein the organisms have been modified to express an acyl-CoA synthetase, to express an acyl transferase, to delete or inactivate a fatty acid synthase (FAS) expressed by the organism, to reduce competition for malonyl CoA with the PUFA synthase or to increase the level of malonyl CoA in the organism, and in one aspect, to inhibit KASII or KASIII.
    Type: Application
    Filed: March 15, 2007
    Publication date: November 22, 2007
    Applicant: MARTEK BIOSCIENCES CORPORATION
    Inventors: James Metz, Jerry Kuner, James Lippmeier
  • Publication number: 20070269869
    Abstract: Described herein is a novel three domain gene from Schizochytrium, denoted carotene synthase, that encodes a protein with three different enzymatic activities: phytoene dehydrogenase (PD), phytoene synthase (PS), and lycopene cyclase (LC). Also described is the isolated gene encoding the carotene synthase, homologues thereof, the enzyme encoded by such gene, biologically active portions and homologues thereof, recombinant nucleic acid molecules, microorganisms and plants that have been genetically modified to increase or decrease the action of such gene, and methods of producing carotenoids and derivatives thereof or methods of producing microorganisms and lipid products lacking pigmentation using the knowledge of the carotene synthase described herein.
    Type: Application
    Filed: November 8, 2006
    Publication date: November 22, 2007
    Applicant: MARTEK BIOSCIENCES CORPORATION
    Inventors: Craig Weaver, James Metz, Jerry Kuner, Frank Overton
  • Publication number: 20070269881
    Abstract: Described herein is a novel three domain gene from Schizochytrium, denoted carotene synthase, that encodes a protein with three different enzymatic activities: phytoene dehydrogenase (PD), phytoene synthase (PS), and lycopene cyclase (LC). Also described is the isolated gene encoding the carotene synthase, homologues thereof, the enzyme encoded by such gene, biologically active portions and homologues thereof, recombinant nucleic acid molecules, microorganisms and plants that have been genetically modified to increase or decrease the action of such gene, and methods of producing carotenoids and derivatives thereof or methods of producing microorganisms and lipid products lacking pigmentation using the knowledge of the carotene synthase described herein.
    Type: Application
    Filed: November 8, 2006
    Publication date: November 22, 2007
    Applicant: MARTEK BIOSCIENCES CORPORATION
    Inventors: Craig Weaver, James Metz, Jerry Kuner, Frank Overton
  • Publication number: 20070266455
    Abstract: Disclosed are the complete polyunsaturated fatty acid (PUFA) polyketide synthase (PKS) systems from the bacterial microorganisms Shewanella japonica and Shewanella olleyana, and biologically active fragments and homologues thereof. More particularly, this invention relates to nucleic acids encoding such PUFA PKS systems, to proteins and domains thereof that comprise such PUFA PKS systems, to genetically modified organisms (plants and microorganisms) comprising such PUFA PKS systems, and to methods of making and using the PUFA PKS systems disclosed herein. This invention also relates to genetically modified plants and microorganisms and methods to efficiently produce lipids enriched in various polyunsaturated fatty acids (PUFAs) as well as other bioactive molecules by manipulation of a PUFA polyketide synthase (PKS) system.
    Type: Application
    Filed: March 21, 2007
    Publication date: November 15, 2007
    Applicant: MARTEK BIOSCIENCES CORPORATION
    Inventors: Craig Weaver, Ross Zirkle, James Metz
  • Publication number: 20070256146
    Abstract: The invention generally relates to polyunsaturated fatty acid (PUFA) polyketide synthase (PKS) systems, to homologues thereof, to isolated nucleic acid molecules and recombinant nucleic acid molecules encoding biologically active domains of such a PUFA PKS system, to genetically modified organisms comprising PUFA PKS systems, to methods of making and using such systems for the production of bioactive molecules of interest, and to novel methods for identifying new bacterial and non-bacterial microorganisms having such a PUFA PKS system.
    Type: Application
    Filed: February 20, 2007
    Publication date: November 1, 2007
    Applicant: MARTEK BIOSCIENCES CORPORATION
    Inventors: James Metz, Craig Weaver, William Barclay, James Flatt
  • Publication number: 20070253933
    Abstract: Described herein is a novel three domain gene from Schizochytrium, denoted carotene synthase, that encodes a protein with three different enzymatic activities: phytoene dehydrogenase (PD), phytoene synthase (PS), and lycopene cyclase (LC). Also described is the isolated gene encoding the carotene synthase, homologues thereof, the enzyme encoded by such gene, biologically active portions and homologues thereof, recombinant nucleic acid molecules, microorganisms and plants that have been genetically modified to increase or decrease the action of such gene, and methods of producing carotenoids and derivatives thereof or methods of producing microorganisms and lipid products lacking pigmentation using the knowledge of the carotene synthase described herein.
    Type: Application
    Filed: November 8, 2006
    Publication date: November 1, 2007
    Applicant: MARTEK BIOSCIENCES CORPORATION
    Inventors: Craig Weaver, James Metz, Jerry Kuner, Frank Overton
  • Publication number: 20070244192
    Abstract: Disclosed are plants that have been genetically modified to express a PKS-like system for the production of PUFAs (a PUFA PKS system), wherein oils produced by the plant contain at least one PUFA produced by the PUFA PKS system and are free of the mixed shorter-chain and less unsaturated PUFAs that are fatty acid products produced by the modification of products of the FAS system in standard fatty acid pathways. Also disclosed are the oil seeds, oils, and products comprising such oils produced by this system, as well as methods for producing such plants.
    Type: Application
    Filed: March 15, 2007
    Publication date: October 18, 2007
    Applicant: MARTEK BIOSCIENCES CORPORATION
    Inventor: James Metz
  • Publication number: 20070245431
    Abstract: Disclosed are novel acyl-CoA synthetases and novel acyltransferases, nucleic acid molecules encoding the same, recombinant nucleic acid molecules and recombinant host cells comprising such nucleic acid molecules, genetically modified organisms (microorganisms and plants) comprising the same, and methods of making and using the same. Also disclosed are genetically modified organisms (e.g., plants, microorganisms) that have been genetically modified to express a PKS-like system for the production of PUFAs (a PUFA PKS system or PUFA synthase), wherein the organisms have been modified to express an acyl-CoA synthetase, to express an acyl transferase, to delete or inactivate a fatty acid synthase (FAS) expressed by the organism, to reduce competition for malonyl CoA with the PUFA synthase or to increase the level of malonyl CoA in the plant or plant cell, and in one aspect, to inhibit KASII or KASIII.
    Type: Application
    Filed: March 15, 2007
    Publication date: October 18, 2007
    Applicants: MARTEK BIOSCIENCES CORPORATION, SEMBIOSYS GENETICS INC.
    Inventors: James Metz, Jerry Kuner, James Lippmeier, Maurice Moloney, Cory Nykiforuk
  • Publication number: 20070089199
    Abstract: Disclosed are the complete polyunsaturated fatty acid (PUFA) polyketide synthase (PKS) systems from Schizochytrium, and biologically active fragments and homologues thereof. More particularly, this invention relates to nucleic acids encoding such PUFA PKS systems, to proteins and domains thereof that comprise such PUFA PKS systems, to genetically modified organisms (plants and microorganisms) comprising such PUFA PKS systems, and to methods of making and using the PUFA PKS systems disclosed herein. This invention also relates to genetically modified plants and microorganisms and methods to efficiently produce lipids enriched in various polyunsaturated fatty acids (PUFAs) as well as other bioactive molecules by manipulation of a PUFA polyketide synthase (PKS) system.
    Type: Application
    Filed: June 12, 2006
    Publication date: April 19, 2007
    Applicant: Martek Biosciences Corporation
    Inventors: James Metz, James Flatt, Jerry Kuner, William Barclay
  • Publication number: 20050273884
    Abstract: The invention generally relates to polyunsaturated fatty acid (PUFA) polyketide synthase (PKS) systems isolated from or derived from non-bacterial organisms, to homologues thereof, to isolated nucleic acid molecules and recombinant nucleic acid molecules encoding biologically active domains of such a PUFA PKS system, to genetically modified organisms comprising PUFA PKS systems, to methods of making and using such systems for the production of bioactive molecules of interest, and to novel methods for identifying new bacterial and non-bacterial microorganisms having such a PUFA PKS system.
    Type: Application
    Filed: March 21, 2005
    Publication date: December 8, 2005
    Applicant: Martek Biosciences Corporation
    Inventors: James Metz, James Flatt, Jerry Kuner, William Barclay
  • Publication number: 20050273883
    Abstract: The invention generally relates to polyunsaturated fatty acid (PUFA) polyketide synthase (PKS) systems isolated from or derived from non-bacterial organisms, to homologues thereof, to isolated nucleic acid molecules and recombinant nucleic acid molecules encoding biologically active domains of such a PUFA PKS system, to genetically modified organisms comprising PUFA PKS systems, to methods of making and using such systems for the production of bioactive molecules of interest, and to novel methods for identifying new bacterial and non-bacterial microorganisms having such a PUFA PKS system.
    Type: Application
    Filed: March 21, 2005
    Publication date: December 8, 2005
    Applicant: Martek Biosciences Corporation
    Inventors: James Metz, James Flatt, Jerry Kuner, William Barclay
  • Publication number: 20050266440
    Abstract: The invention generally relates to polyunsaturated fatty acid (PUFA) polyketide synthase (PKS) systems isolated from or derived from non-bacterial organisms, to homologues thereof, to isolated nucleic acid molecules and recombinant nucleic acid molecules encoding biologically active domains of such a PUFA PKS system, to genetically modified organisms comprising PUFA PKS systems, to methods of making and using such systems for the production of bioactive molecules of interest, and to novel methods for identifying new bacterial and non-bacterial microorganisms having such a PUFA PKS system.
    Type: Application
    Filed: March 21, 2005
    Publication date: December 1, 2005
    Inventors: James Metz, James Flatt, Jerry Kuner, William Barclay
  • Publication number: 20050191679
    Abstract: Disclosed are a fatty acid synthase (FAS) from Schizochytrium, biologically active fragments and homologues thereof, a nucleic acid sequence encoding such FAS, fragments and homologues thereof, the gene encoding Schizochytrium FAS, host cells and organisms that recombinantly express the FAS, host cells and organisms in which the expression and/or activity of the endogenous FAS has been attenuated, and various methods for making and using any of these proteins, nucleic acid molecules, genes, host cells or organisms.
    Type: Application
    Filed: February 14, 2005
    Publication date: September 1, 2005
    Applicant: Martek Biosciences Corporation
    Inventors: James Metz, Craig Weaver, Jerry Kuner
  • Publication number: 20050112719
    Abstract: Disclosed are nucleic acid and amino acid sequences for acetolactate synthase, acetolactate synthase regulatory regions, ?-tubulin promoter, a promoter from a Thraustochytriales polyketide synthase (PKS) system, and fatty acid desaturase promoter, each from a Thraustochytriales microorganism. Also disclosed are recombinant vectors useful for transformation of Thraustochytriales microorganisms, as well as a method of transformation of Thraustochytriales microorganisms. The recombinant nucleic acid molecules of the present invention can be used for the expression of foreign nucleic acids in a Thraustochytriales microorganism as well as for the deletion, mutation, or inactivation of genes in Thraustochytriales microorganisms.
    Type: Application
    Filed: December 22, 2004
    Publication date: May 26, 2005
    Inventors: Paul Roessler, T. Matthews, Tom Ramseier, James Metz
  • Publication number: 20050100995
    Abstract: Disclosed are the complete polyunsaturated fatty acid (PUFA) polyketide synthase (PKS) systems from the bacterial microorganisms Shewanella japonica and Shewanella olleyana, and biologically active fragments and homologues thereof. More particularly, this invention relates to nucleic acids encoding such PUFA PKS systems, to proteins and domains thereof that comprise such PUFA PKS systems, to genetically modified organisms (plants and microorganisms) comprising such PUFA PKS systems, and to methods of making and using the PUFA PKS systems disclosed herein. This invention also relates to genetically modified plants and microorganisms and methods to efficiently produce lipids enriched in various polyunsaturated fatty acids (PUFAs) as well as other bioactive molecules by manipulation of a PUFA polyketide synthase (PKS) system.
    Type: Application
    Filed: October 13, 2004
    Publication date: May 12, 2005
    Inventors: Craig Weaver, Ross Zirkle, James Metz
  • Patent number: D521430
    Type: Grant
    Filed: March 28, 2005
    Date of Patent: May 23, 2006
    Inventor: James A. Metz