Patents by Inventor James Robertson Jago

James Robertson Jago has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11918300
    Abstract: An ultrasound imaging system for needle insertion guidance uses a curved array transducer to scan an image field with unsteered beams as a needle is inserted into the image field. Due to differences in the angle of incidence between the radially directed beams and the needle, echoes will return most strongly from only a section of the needle. This section is identified in an image, and the angle of incidence producing the strongest returns is identified. Beams with this optimal angle of incidence are then steered in parallel from the curved array transducer to produce the best needle image. The steep steering angles of some of the steered beams can give rise to side lobe clutter artifacts, which can be identified and removed from the image data using dual apodization processing of the image data.
    Type: Grant
    Filed: January 15, 2019
    Date of Patent: March 5, 2024
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Shannon Renee Fox, Changhong Hu, Kyong Chang, James Robertson Jago, Thanasis Loupas
  • Patent number: 11903761
    Abstract: The present disclosure describes ultrasound imaging systems and methods that may be used to image, for example, breast tissue. An ultrasound imaging system according to one embodiment may include a probe, a sensor attached to the probe and operatively associated with a position tracking system, a processor configured to receive probe position data from the position tracking system. The user interface may be configured to provide instructions for placement of the probe at a plurality of anatomical landmarks of a selected breast of the subject and receive user input to record the spatial location of the probe at each of the plurality of anatomical landmarks. The processor may be configured to determine a scan area based on the spatial location of the probe at each of the plurality of anatomical landmarks and generate a scan pattern for the selected breast. The processor may be further configured to monitor movement of the probe.
    Type: Grant
    Filed: July 13, 2022
    Date of Patent: February 20, 2024
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: James Robertson Jago, Julia Dmitrieva, Gary Cheng-How Ng, Thomas Shu Yin Tang
  • Publication number: 20230329670
    Abstract: An ultrasound system is used to measure the percent stenosis of a vessel in terms of residual lumen area. A measurement of volume blood flow is made at an unobstructed point of the vessel near the site of the stenosis. A measurement of the time averaged mean blood flow velocity is made at the stenosis. The quotient of these two values is computed to produce an estimate of the residual lumen area and the percent stenosis at site of the obstruction.
    Type: Application
    Filed: June 21, 2023
    Publication date: October 19, 2023
    Inventor: James Robertson Jago
  • Publication number: 20230143880
    Abstract: An ultrasonic diagnostic imaging system is used to measure volume flow. An ultrasound probe operating in the biplane mode is used to acquire a vessel in a long axis view in a first Doppler image, and simultaneously in a transverse view in a second Doppler image. Volume flow is calculated from the transverse view of the vessel. The plane of the second image is aligned with the Doppler angle of the first image so that angle correction determined for the first image can be used for angle correction in the volume flow calculation.
    Type: Application
    Filed: April 14, 2021
    Publication date: May 11, 2023
    Inventors: James Robertson Jago, Thanasis Loupas
  • Publication number: 20220346753
    Abstract: The present disclosure describes ultrasound imaging systems and methods that may be used to image, for example, breast tissue. An ultrasound imaging system according to one embodiment may include a probe, a sensor attached to the probe and operatively associated with a position tracking system, a processor configured to receive probe position data from the position tracking system. The user interface may be configured to provide instructions for placement of the probe at a plurality of anatomical landmarks of a selected breast of the subject and receive user input to record the spatial location of the probe at each of the plurality of anatomical landmarks. The processor may be configured to determine a scan area based on the spatial location of the probe at each of the plurality of anatomical landmarks and generate a scan pattern for the selected breast. The processor may be further configured to monitor movement of the probe.
    Type: Application
    Filed: July 13, 2022
    Publication date: November 3, 2022
    Inventors: James Robertson Jago, Julia Dmitrieva, Gary Cheng-How Ng, Thomas Shu Yin Tang
  • Patent number: 11419577
    Abstract: The present disclosure describes ultrasound imaging systems and methods that may be used to image, for example, breast tissue. An ultrasound imaging system according to one embodiment may include a probe, a sensor attached to the probe and operatively associated with a position tracking system, a processor configured to receive probe position data from the position tracking system. The user interface may be configured to provide instructions for placement of the probe at a plurality of anatomical landmarks of a selected breast of the subject and receive user input to record the spatial location of the probe at each of the plurality of anatomical landmarks. The processor may be configured to determine a scan area based on the spatial location of the probe at each of the plurality of anatomical landmarks and generate a scan pattern for the selected breast. The processor may be further configured to monitor movement of the probe.
    Type: Grant
    Filed: April 13, 2017
    Date of Patent: August 23, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: James Robertson Jago, Julia Dmitrieva, Gary Cheng-How Ng, Thomas Shu Yin Tang
  • Publication number: 20220183655
    Abstract: An ultrasonic diagnostic imaging system acquires volume image flow data sets of subvolumes of a blood vessel over at least a cardiac cycle. Image data of the subvolumes is then aligned both spatially and temporally to produce 3D images of the volume flow of the blood vessel over a heart cycle. A volume flow profile curve is produced from the acquired volume image flow data sets. The subvolumes are scanned starting with the center of the blood vessel and proceeding outward therefrom. The blood vessel center may be designated manually by a user or automatically by the ultrasound system by Doppler or other methods. Each subvolume is scanned over a heart cycle, with the systolic phase in the temporal center of the acquisition interval. The subvolumes are scanned in synchronism with the heart cycle and the estimation of a heart cycle is updated during each subvolume data acquisition interval.
    Type: Application
    Filed: March 19, 2020
    Publication date: June 16, 2022
    Inventors: SHENG-WEN HUANG, JAMES ROBERTSON JAGO, SIBO LI, SHIYING WANG, JUN SOEB SHIN, GERARD JOSEPH HARRISON, THANASIS LOUPAS, LIANG ZHANG
  • Patent number: 11219427
    Abstract: The present disclosure describes ultrasound imaging systems and methods that may be used to image breast tissue. An ultrasound imaging system according to one embodiment may include a user interface comprising a display, a processor operatively connected to the user interface, and memory comprising processor-executable instructions, which when executed by the processor cause the user interface to display a first ultrasound image of a breast on the display and receive an indication of a first region of interest (ROI) in the first ultrasound image. The memory may include instructions to further cause the user interface to display a second ultrasound image of the breast on the display and receive an indication of a second region of interest in the second ultrasound image.
    Type: Grant
    Filed: June 7, 2017
    Date of Patent: January 11, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Julia Dmitrieva, Gary Cheng-How Ng, James Robertson Jago
  • Publication number: 20210219952
    Abstract: Systems, devices, and methods for ultrasonic imaging by sparse sampling are provided. In one embodiment, an ultrasound imaging system comprises an array of ultrasound transducer elements, electronic circuitry in communication with the array of ultrasound transducer elements and configured to select a first receive aperture of the array comprising a plurality of contiguous ultrasound transducer elements and at least one non-contiguous ultrasound transducer element, and a beamformer in communication with the electronic circuitry. Each ultrasound transducer element of the first receive aperture is configured to receive reflected ultrasound echoes and generate an electrical signal representative of imaging data.
    Type: Application
    Filed: May 7, 2019
    Publication date: July 22, 2021
    Inventors: Sheng-Wen Huang, Changhong Hu, Douglas Robert Maxwell, David Hope Simpson, James Robertson Jago, Francois Guy Gerard Marie Vignon, Jun Seob Shin, Xiaowen Hu, Unmin Bae
  • Patent number: 11006923
    Abstract: An ultrasound system includes a 3D imaging probe and a needle guide which attaches to the probe for guidance of needle insertion into a volumetric region which can be scanned by the 3D imaging probe. The needle guide responds to the insertion of a needle through the guide by identifying a plane for scanning by the probe which is the insertion plane through which the needle will pass during insertion. The orientation of the insertion plane is communicated to the probe to cause the probe to scan the identified plane and produce images of the needle as it travels through the insertion plane.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: May 18, 2021
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Gary Lee Andrews, Vijay Parthasarathy, Gary Cheng-How Ng, Douglas Allen Stanton, Andrew Lee Robinson, Jochen Kruecker, Christopher Stephen Hall, James Robertson Jago, Vijay Shamdasani
  • Publication number: 20210038320
    Abstract: An ultrasound imaging system for needle insertion guidance uses a curved array transducer to scan an image field with unsteered beams as a needle is inserted into the image field. Due to differences in the angle of incidence between the radially directed beams and the needle, echoes will return most strongly from only a section of the needle. This section is identified in an image, and the angle of incidence producing the strongest returns is identified. Beams with this optimal angle of incidence are then steered in parallel from the curved array transducer to produce the best needle image. The steep steering angles of some of the steered beams can give rise to side lobe clutter artifacts, which can be identified and removed from the image data using dual apodization processing of the image data.
    Type: Application
    Filed: January 15, 2019
    Publication date: February 11, 2021
    Inventors: Shannon Renee Fox, Changhong Hu, Kyong Chang, James Robertson Jago, Thanasis Loupas
  • Publication number: 20210030392
    Abstract: The present disclosure describes ultrasound imaging systems and methods that may be used to image breast tissue. An ultrasound imaging system according to one embodiment may include a user interface comprising a display, a processor operatively connected to the user interface, and memory comprising processor-executable instructions, which when executed by the processor cause the user interface to display a first ultrasound image of a breast on the display and receive an indication of a first region of interest (ROI) in the first ultrasound image. The memory may include instructions to further cause the user interface to display a second ultrasound image of the breast on the display and receive an indication of a second region of interest in the second ultrasound image.
    Type: Application
    Filed: June 7, 2017
    Publication date: February 4, 2021
    Inventors: Julia Dmitrieva, Gary Cheng-How Ng, James Robertson Jago
  • Patent number: 10891777
    Abstract: The present invention relates to an ultrasound imaging system comprising an ultrasound probe having a transducer array configured to provide an ultrasound receive signal. The system further comprises a B-mode volume processing unit configured to generate a B-mode volume based on the ultrasound receive signal, and a B-mode image processing unit configured to provide a current B-mode image based on the B-mode volume. The system further comprises a memory configured to store a previously acquired 3D-vessel map. Also, the system comprises a registration unit configured to register the previously acquired 3D-vessel map to the B-mode volume and to select a portion of the 3D-vessel map corresponding to the current B-mode image. Further, the system comprises a display configured to display an ultrasound image based on the current B-mode image and the selected portion of the 3D-vessel map.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: January 12, 2021
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Gary Cheng-How Ng, James Robertson Jago, Andrew Lee Robinson
  • Publication number: 20200253579
    Abstract: An ultrasound system is used to measure the percent stenosis of a vessel in terms of residual lumen area. A measurement of volume blood flow is made at an unobstructed point of the vessel near the site of the stenosis. A measurement of the time averaged mean blood flow velocity is made at the stenosis. The quotient of these two values is computed to produce an estimate of the residual lumen area and the percent stenosis at site of the obstruction.
    Type: Application
    Filed: October 16, 2018
    Publication date: August 13, 2020
    Inventor: JAMES ROBERTSON JAGO
  • Patent number: 10410409
    Abstract: An ultrasound system and method are described for acquiring standard views of the fetal heart simultaneously with real-time imaging. A matrix array probe is manipulated until a first standard view such as a 4-chamber view is acquired. The first standard view image is matched to its corresponding plane in a fetal heart model. From the matched plane of the heart model, the orientations of the other standard views are known from the geometrical relationships of structures within the heart model. This orientation information is used to control the matrix array probe to automatically scan the planes of all of the standard views simultaneously in real-time.
    Type: Grant
    Filed: July 26, 2017
    Date of Patent: September 10, 2019
    Assignee: Koninklijke Philips N.V.
    Inventors: James Robertson Jago, Alasdair Dow, Antoine Collet Billon, Lisa Kay Pumphrey
  • Patent number: 10368844
    Abstract: An ultrasound system with a matrix array (500) probe (10) operable in the biplane mode is used to assess stenosis of a blood vessel by simultaneously displaying two color Doppler biplane images (60a, 60b) of the vessel, one a longitudinal cross-sectional view (60a) and the other a transverse cross-sectional view (60b). The two image planes intersect along a Doppler beam line (68) used for PW Doppler. A sample volume graphic (SV) is positioned over the blood vessel at the peak velocity location in one image, then positioned over the blood vessel at the peak velocity location in the other image. As the sample volume location is moved in one image, the plane and/or sample volume location of the other image is adjusted correspondingly. Spectral Doppler data (62) is then acquired and displayed from the sample volume location.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: August 6, 2019
    Assignee: Koninklijke Philips N.V.
    Inventors: James Robertson Jago, Keith William Johnson, Ashraf Saad, David Allen Hull
  • Publication number: 20190142383
    Abstract: An ultrasound system is quickly set up for 3D imaging of target anatomy by clicking on a quick-launch key. The system uses a system input, such as characteristics of a 2D reference image to determine the 3D setup configuration. Based upon the system input, macro instructions can be selected and executed to set up the system for a 3D exam of the target anatomy in a selected mode, with clinically useful 3D images and the appropriate 3D controls enabled.
    Type: Application
    Filed: May 3, 2017
    Publication date: May 16, 2019
    Inventors: Anup Agarwal, James Robertson Jago, Robert Randall Entrekin, Jimmy Ray Brown, Barbara Bannister
  • Patent number: 10290076
    Abstract: A system and method for image registration includes tracking (508) a scanner probe in a position along a skin surface of a patient. Image planes corresponding to the position are acquired (510). A three-dimensional volume of a region of interest is reconstructed (512) from the image planes. A search of an image volume is initialized (514) to determine candidate images to register the image volume with the three-dimensional volume by employing pose information of the scanner probe during image plane acquisition, and physical constraints of a pose of the scanner probe. The image volume is registered (522) with the three-dimensional volume.
    Type: Grant
    Filed: March 2, 2012
    Date of Patent: May 14, 2019
    Assignees: The United States of America, as represented by the Secretary, Department of Health and Human Services, Koninklijke Philips N.V.
    Inventors: Samuel Kadoury, Jochen Kruecker, James Robertson Jago, Bradford Johns Wood, Antoine Collet-Billon, Cecile Dufour
  • Publication number: 20190125301
    Abstract: The present disclosure describes ultrasound imaging systems and methods that may be used to image, for example, breast tissue. An ultrasound imaging system according to one embodiment may include a probe, a sensor attached to the probe and operatively associated with a position tracking system, a processor configured to receive probe position data from the position tracking system. The user interface may be configured to provide instructions for placement of the probe at a plurality of anatomical landmarks of a selected breast of the subject and receive user input to record the spatial location of the probe at each of the plurality of anatomical landmarks. The processor may be configured to determine a scan area based on the spatial location of the probe at each of the plurality of anatomical landmarks and generate a scan pattern for the selected breast. The processor may be further configured to monitor movement of the probe.
    Type: Application
    Filed: April 13, 2017
    Publication date: May 2, 2019
    Inventors: James Robertson JAGO, Julia DMITRIEVA, Gary Cheng-How NG, Thomas Shu Yin TANG
  • Publication number: 20190088003
    Abstract: The present invention relates to an ultrasound imaging system comprising an ultrasound probe having a transducer array configured to provide an ultrasound receive signal. The system further comprises a B-mode volume processing unit configured to generate a B-mode volume based on the ultrasound receive signal, and a B-mode image processing unit configured to provide a current B-mode image based on the B-mode volume. The system further comprises a memory configured to store a previously acquired 3D-vessel map. Also, the system comprises a registration unit configured to register the previously acquired 3D-vessel map to the B-mode volume and to select a portion of the 3D-vessel map corresponding to the current B-mode image. Further, the system comprises a display configured to display an ultrasound image based on the current B-mode image and the selected portion of the 3D-vessel map.
    Type: Application
    Filed: November 16, 2018
    Publication date: March 21, 2019
    Inventors: Gary Cheng-How Ng, James Robertson Jago, Andrew Lee Robinson