Patents by Inventor James S. Sirkis

James S. Sirkis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7253897
    Abstract: An optical spectrum analyzer (OSA) 10 sequentially or selectively samples (or filters) a spectral band(s) 11 of light from a broadband optical input signal 12 and measures predetermined optical parameters of the optical signal (e.g., spectral profile) of the input light 12. The OSA 10 is a free-space optical device that includes a collimator assembly 15, a diffraction grating 20 and a mirror 22. A launch pigtail emits into free space the input signal through the collimator assembly 15 and onto the diffraction grating 20, which separates or spreads spatially the collimated input light, and reflects the dispersed light onto the mirror 22. A ?/4 plate 26 is disposed between the mirror 22 and the diffraction grating 20. The mirror reflects the separated light back through the ?/4 plate 26 to the diffraction grating 20, which reflects the light back through the collimating lens 18. The lens 18 focuses spectral bands of light (?1–?N) at different focal points in space.
    Type: Grant
    Filed: March 11, 2004
    Date of Patent: August 7, 2007
    Assignee: CiDRA Corporation
    Inventors: John A. Moon, James S. Sirkis, Ralph Jones, Charles R. Winston, David R. Fournier, Joseph Pinto, Robert N. Brucato, James R. Dunphy, Christopher J. Chestnut
  • Patent number: 7209606
    Abstract: An optical sensing device including a force-applying assembly for providing a force and a Fabry-Perot (FP) element including a large-diameter waveguide having a core and having a cavity in line with the core, the cavity having reflective surfaces and having an optical path length related to the distance between the reflective surfaces, the FP element being coupled to the force so that the optical path length changes according to the force, the FP element for providing an output optical signal containing information about a parameter that relates to the force. Sometimes the large-diameter waveguide is formed by collapsing a glass tube, having a bore and having an outer diameter of about one millimeter, onto a pair of optical fibers arranged in tandem in the bore and separated by a predetermined distance, and respective end faces of the optical fibers form the cavity and are coated with a wholly or partially reflective material.
    Type: Grant
    Filed: May 24, 2005
    Date of Patent: April 24, 2007
    Assignee: Weatherford/Lamb, Inc.
    Inventors: Alan D. Kersey, Martin A. Putnam, Mark R. Fernald, Robert N. Brucato, James S. Sirkis
  • Patent number: 7126740
    Abstract: A reconfigurable multifunctional optical device has an optical arrangement for receiving an optical signal, each having optical bands or channels, and a spatial light modulator for reflecting the at least one optical signal provided thereon. The optical arrangement features a free optics configuration with a light dispersion element for spreading each optical signal into one or more respective optical bands or channels for performing separate optical functions on each optical signal. The spatial light modulator includes a micro-mirror device with an array of micro-mirrors, and the respective optical bands or channels reflect off respective micro-mirrors. The free optics configuration includes a common set of optical components for performing each separate optical function on each optical signal. The separate optical functions reflect off separate non-overlapping areas on the spatial light modulator. The separate optical functions include optical switching, conditioning or monitoring functions.
    Type: Grant
    Filed: January 28, 2003
    Date of Patent: October 24, 2006
    Assignee: CiDRA Corporation
    Inventors: Paul Szczepanek, John A. Moon, Alan D. Kersey, James S. Sirkis, James R. Dunphy, Joseph Pinto, Christian O'Keefe, Michael A. Davis
  • Patent number: 7062126
    Abstract: A tunable optical filter has a large diameter cane waveguide with “side-holes” in the cane cross-section that reduce the force required to compress the large diameter optical waveguide without overly compromising the buckling strength thereof. The large diameter optical waveguide has a cross-section of at least about 0.3 millimeters, including at least one inner core, a Bragg grating arranged therein, a cladding surrounding the inner core, and a structural configuration for providing a reduced bulk modulus of compressibility and maintaining the anti-buckling strength of the large diameter optical waveguide. The structural configuration reduces the cross-sectional area of the large diameter optical waveguide. These side holes reduce the amount of glass that needs to be compressed, but retains the large diameter.
    Type: Grant
    Filed: June 2, 2003
    Date of Patent: June 13, 2006
    Inventors: Alan D. Kersey, Mark R. Fernald, Timothy J. Bailey, Michael A. Davis, Thomas W. Engel, Robert N. Brucato, Richard T. Jones, Trevor W. MacDougall, Matthew B. Miller, Paul E. Sanders, James S. Sirkis, James M. Sullivan, Martin A. Putnam
  • Patent number: 6956687
    Abstract: A reconfigurable optical blocking filter deletes a desired optical channel(s) from an optical WDM input signal, and includes a spatial light modulator having a micro-mirror device with a two-dimensional array of micro-mirrors that tilt between first and second positions in a “digital” fashion in response to a control signal provided by a controller in accordance with a switching algorithm and an input command. A collimators, diffraction grating, and Fourier lens, collectively collimate, separate and focus the optical input channels onto the array of micro-mirrors. The optical channel is focused on the micro-mirrors onto a plurality of micro-mirrors of the micro-mirror device, which effectively pixelates the optical channels. To delete an input channel of the optical input signal, micro-mirrors associated with each desired input channel are tilted to reflect the desired input channel away from the return path.
    Type: Grant
    Filed: December 19, 2002
    Date of Patent: October 18, 2005
    Assignee: CiDRA Corporation
    Inventors: John A. Moon, Alan D. Kersey, James S. Sirkis, James R. Dunphy, Joseph Pinto, Paul Szczepanek, Michael A. Davis, Martin A. Putnam
  • Patent number: 6915048
    Abstract: A Fabry-Perot optical device, including: a large-diameter elongated optical waveguide having a core and having an air gap region disposed along the longitudinal axis of the waveguide, and with the air gap region enclosed by end faces substantially perpendicular to the longitudinal axis of the waveguide, the waveguide also having a cavity delimited on at least one side by an endface of the air gap, wherein the endface is at least partially reflective. From another perspective, the invention provides an apparatus including: a force-applying assembly, responsive to a control signal containing information about a selected resonated wavelength or a selected filtered wavelength derived from an optical signal, for providing a force; and a Fabry-Perot optical structure, responsive to the force, and further responsive to the optical signal, for providing a Fabry-Perot optical structure signal either with the selected resonated wavelength or without the selected filtered wavelength.
    Type: Grant
    Filed: June 17, 2002
    Date of Patent: July 5, 2005
    Assignee: CiDRA Corporation
    Inventors: Alan D. Kersey, Paul E. Sanders, Martin A. Putnam, Robert N. Brucato, James S. Sirkis
  • Patent number: 6898338
    Abstract: An optical sensing device including a force-applying assembly for providing a force and a Fabry-Perot (FP) element including a large-diameter waveguide having a core and having a cavity in line with the core, the cavity having reflective surfaces and having an optical path length related to the distance between the reflective surfaces, the FP element being coupled to the force so that the optical path length changes according to the force, the FP element for providing an output optical signal containing information about a parameter that relates to the force. Sometimes the large-diameter waveguide is formed by collapsing a glass tube, having a bore and having an outer diameter of about one millimeter, onto a pair of optical fibers arranged in tandem in the bore and separated by a predetermined distance, and respective end faces of the optical fibers form the cavity and are coated with a wholly or partially reflective material.
    Type: Grant
    Filed: May 17, 2002
    Date of Patent: May 24, 2005
    Assignee: Weatherford/Lamb, Inc.
    Inventors: Alan D. Kersey, Martin A. Putnam, Mark R. Fernald, Robert N. Brucato, James S. Sirkis
  • Patent number: 6834142
    Abstract: An optical filter for filtering a spectral profile of an optical signal for providing an output signal having a desire gain profile, such as a flatten gain profile. The filter comprises an optical waveguide that includes a core disposed within a cladding having an outer dimension greater than 0.3 mm. A Bragg grating is imparted or written in the core of the waveguide that attenuates the received optical input signal in accordance with a defined reflection or transmission filter profile. The Bragg grating may be a slanted grating. The filter profile is complementary to the spectral gain profile of the input signal to provide an output signal having a substantially flat spectral profile of a desired wavelength band. The cladding of the waveguide may have a mechanically advantageous outer geometry (e.g., a “dogbone” shape) for allowing an axial compressive force to tune the Bragg grating.
    Type: Grant
    Filed: March 15, 2002
    Date of Patent: December 21, 2004
    Assignee: CiDRA Corporation
    Inventors: Timothy J. Bailey, Martin A. Putnam, Jay W. Dawson, Joseph Pinto, James S. Sirkis, Paul S. Szczepanek
  • Publication number: 20040246477
    Abstract: An optical spectrum analyzer (OSA) 10 sequentially or selectively samples (or filters) a spectral band(s) 11 of light from a broadband optical input signal 12 and measures predetermined optical parameters of the optical signal (e.g., spectral profile) of the input light 12. The OSA 10 is a free-space optical device that includes a collimator assembly 15, a diffraction grating 20 and a mirror 22. A launch pigtail emits into free space the input signal through the collimator assembly 15 and onto the diffraction grating 20, which separates or spreads spatially the collimated input light, and reflects the dispersed light onto the mirror 22. A &lgr;/4 plate 26 is disposed between the mirror 22 and the diffraction grating 20. The mirror reflects the separated light back through the &lgr;/4 plate 26 to the diffraction grating 20, which reflects the light back through the collimating lens 18. The lens 18 focuses spectral bands of light (&lgr;1-&lgr;N) at different focal points in space.
    Type: Application
    Filed: March 11, 2004
    Publication date: December 9, 2004
    Inventors: John A. Moon, James S. Sirkis, Ralph Jones, Charles R. Winston, David R. Fournier, Joseph Pinto, Robert N. Brucato, James R. Dunphy, Christopher J. Chestnut
  • Publication number: 20040042726
    Abstract: A tunable optical filter has a large diameter cane waveguide with “side-holes” in the cane cross-section that reduce the force required to compress the large diameter optical waveguide without overly compromising the buckling strength thereof. The large diameter optical waveguide has a cross-section of at least about 0.3 millimeters, including at least one inner core, a Bragg grating arranged therein, a cladding surrounding the inner core, and a structural configuration for providing a reduced bulk modulus of compressibility and maintaining the anti-buckling strength of the large diameter optical waveguide. The structural configuration reduces the cross-sectional area of the large diameter optical waveguide. These side holes reduce the amount of glass that needs to be compressed, but retains the large diameter.
    Type: Application
    Filed: June 2, 2003
    Publication date: March 4, 2004
    Applicant: CiDRA Corporation
    Inventors: Alan D. Kersey, Mark R. Fernald, Timothy J. Bailey, Michael A. Davis, Thomas W. Engel, Robert N. Brucato, Richard T. Jones, Trevor W. MacDougall, Matthew B. Miller, Paul E. Sanders, James S. Sirkis, James M. Sullivan, Martin A. Putnam
  • Publication number: 20040008401
    Abstract: A reconfigurable multifunctional optical device has an optical arrangement for receiving an optical signal, each having optical bands or channels, and a spatial light modulator for reflecting the at least one optical signal provided thereon. The optical arrangement features a free optics configuration with a light dispersion element for spreading each optical signal into one or more respective optical bands or channels for performing separate optical functions on each optical signal. The spatial light modulator includes a micro-mirror device with an array of micro-mirrors, and the respective optical bands or channels reflect off respective micro-mirrors. The free optics configuration includes a common set of optical components for performing each separate optical function on each optical signal. The separate optical functions reflect off separate non-overlapping areas on the spatial light modulator. The separate optical functions include optical switching, conditioning or monitoring functions.
    Type: Application
    Filed: January 28, 2003
    Publication date: January 15, 2004
    Applicant: CiDRA Corporation
    Inventors: Paul Szczepanek, John A. Moon, Alan D. Kersey, James S. Sirkis, James R. Dunphy, Joseph Pinto, Christian O'Keefe, Michael A. Davis
  • Publication number: 20030231844
    Abstract: An apparatus serving as a Fabry-Perot optical device, including: a large-diameter elongated optical waveguide having a core and having an air gap region disposed along the longitudinal axis of the waveguide, and with the air gap region enclosed by end faces substantially perpendicular to the longitudinal axis of the waveguide, the waveguide also having a cavity delimited on at least one side by an endface of the air gap, wherein the endface is at least partially reflective. From another perspective, the invention provides an apparatus including: a force-applying assembly, responsive to a control signal containing information about a selected resonated wavelength or a selected filtered wavelength derived from an optical signal, for providing a force; and a Fabry-Perot optical structure, responsive to the force, and further responsive to the optical signal, for providing a Fabry-Perot optical structure signal either with the selected resonated wavelength or without the selected filtered wavelength.
    Type: Application
    Filed: June 17, 2002
    Publication date: December 18, 2003
    Inventors: Alan D. Kersey, Paul E. Sanders, Martin A. Putnam, Robert N. Brucato, James S. Sirkis
  • Publication number: 20030215185
    Abstract: A large diameter waveguide is provided having a diameter of at least about 0.3 millimeters, and an outer cladding with an inner core with a long period grating included therein. The long period grating either couples forward propagating cores modes to forward propagating cladding modes of one optical signal travelling in one direction in the large diameter waveguide, or couples forward propagating cladding modes to forward propagating cores modes of another optical signal travelling in another direction in the large diameter waveguide. The long period grating has an optical parameter that changes in response to an application of a compressive force on the optical waveguide. The outer cladding may also have the long period grating written therein. The long period grating has concatenated periodic or aperiodic gratings. The optical waveguide may be shaped like a dogbone structure having wider outer sections and a narrower central section inbetween.
    Type: Application
    Filed: June 6, 2003
    Publication date: November 20, 2003
    Applicant: CiDRA Corporation,
    Inventors: James S. Sirkis, Trevor W. Macdougall, Timothy J. Bailey, Mark R. Fernald, Martin A. Putnam, Jerin Russell
  • Publication number: 20030185509
    Abstract: An optical filter for filtering a spectral profile of an optical signal for providing an output signal having a desire gain profile, such as a flatten gain profile. The filter comprises an optical waveguide that includes a core disposed within a cladding having an outer dimension greater than 0.3 mm. A Bragg grating is imparted or written in the core of the waveguide that attenuates the received optical input signal in accordance with a defined reflection or transmission filter profile. The Bragg grating may be a slanted grating. The filter profile is complementary to the spectral gain profile of the input signal to provide an output signal having a substantially flat spectral profile of a desired wavelength band. The cladding of the waveguide may have a mechanically advantageous outer geometry (e.g., a “dogbone” shape) for allowing an axial compressive force to tune the Bragg grating.
    Type: Application
    Filed: March 15, 2002
    Publication date: October 2, 2003
    Inventors: Timothy J. Bailey, Martin A. Putnam, Jay W. Dawson, Joseph Pinto, James S. Sirkis, Paul S. Szczepanek
  • Publication number: 20030184843
    Abstract: A reconfigurable optical blocking filter deletes a desired optical channel(s) from an optical WDM input signal, and includes a spatial light modulator having a micro-mirror device with a two-dimensional array of micro-mirrors that tilt between first and second positions in a “digital” fashion in response to a control signal provided by a controller in accordance with a switching algorithm and an input command. A collimators, diffraction grating, and Fourier lens, collectively collimate, separate and focus the optical input channels onto the array of micro-mirrors. The optical channel is focused on the micro-mirrors onto a plurality of micro-mirrors of the micro-mirror device, which effectively pixelates the optical channels. To delete an input channel of the optical input signal, micro-mirrors associated with each desired input channel are tilted to reflect the desired input channel away from the return path.
    Type: Application
    Filed: December 19, 2002
    Publication date: October 2, 2003
    Applicant: CiDRA Corporation
    Inventors: John A. Moon, Alan D. Kersey, James S. Sirkis, James R. Dunphy, Joseph Pinto, Paul Szczepanek, Michael A. Davis, Martin A. Putnam
  • Patent number: 6621957
    Abstract: A temperature compensated optical device includes a compression-tuned glass element 10 having a Bragg grating 12 therein, a compensating material spacer 26 and an end cap 28 all held within an outer shell 30. The element 10, end cap 28 and shell 30 are made of a material having a low coefficient of thermal expansion (CTE), e.g., silica, quartz, etc. and the spacer 26 is made of a material having a higher CTE, e.g., metal, Pyrex®, ceramic, etc. The material and length L5 of the spacer 26 is selected to offset the upward grating wavelength shift due to temperature. As temperature rises, the spacer 26 expands faster than the silica structure causing a compressive strain to be exerted on the element 10, which shifts the wavelength of the grating 12 down to balance the intrinsic temperature induces wavelength shift up. As a result, the grating 12 wavelength is substantially unchanged over a wide temperature range.
    Type: Grant
    Filed: October 30, 2000
    Date of Patent: September 16, 2003
    Assignee: CiDRA Corporation
    Inventors: James M. Sullivan, Timothy J. Bailey, Robert N. Brucato, Thomas W. Engel, Mark R. Fernald, Richard T. Jones, Alan D. Kersey, Trevor MacDougall, Matthew B. Miller, Martin A. Putnam, Paul E. Sanders, James S. Sirkis
  • Publication number: 20020196995
    Abstract: An optical sensing device including a force-applying assembly for providing a force and a Fabry-Perot (FP) element including a large-diameter waveguide having a core and having a cavity in line with the core, the cavity having reflective surfaces and having an optical path length related to the distance between the reflective surfaces, the FP element being coupled to the force so that the optical path length changes according to the force, the FP element for providing an output optical signal containing information about a parameter that relates to the force. Sometimes the large-diameter waveguide is formed by collapsing a glass tube, having a bore and having an outer diameter of about one millimeter, onto a pair of optical fibers arranged in tandem in the bore and separated by a predetermined distance, and respective end faces of the optical fibers form the cavity and are coated with a wholly or partially reflective material.
    Type: Application
    Filed: May 17, 2002
    Publication date: December 26, 2002
    Applicant: WEATHERFORD/LAMB, INC.
    Inventors: Alan D. Kersey, Martin A. Putnam, Mark R. Fernald, Robert N. Brucato, James S. Sirkis
  • Publication number: 20020172459
    Abstract: An optical coupling device is provided for coupling a pump light into an optical waveguide such as an optical fiber or planar waveguide. An optical source provides a pump light. A large diameter optical waveguide is arranged in relation to the optical source, has a diameter substantially greater than 0.3 microns, and includes a reflective surface that reflects the pump light and provides a reflected pump light to the optical fiber. The reflective surface may be either a notched surface of a V-shaped indentation or a cleaved end of the large diameter optical waveguide. Alternatively, the optical coupling device is includes a side tap lens mounted to the large diameter optical waveguide for directing pump light provided by the optical source. The side tap lens is arranged in relation to the optical source and includes a reflective surface that reflects the pump light and provides a reflected pump light to the large diameter waveguide, which directs the pump light to the optical fiber.
    Type: Application
    Filed: March 15, 2002
    Publication date: November 21, 2002
    Inventors: Timothy J. Bailey, Martin A. Putnam, John A. Moon, Jay W. Dawson, Joseph Pinto, James S. Sirkis, Paul S. Szczepanek
  • Patent number: 6470036
    Abstract: A tunable external cavity semiconductor laser incorporating a tunable Bragg grating, including: a semiconductor gain medium; an elongated tuner housing having a tuner housing head and having a tuner housing foot, the tuner housing head and tuner housing foot being rigidly connected; a span of waveguide having a Bragg grating, for receiving the source light and for providing in turn the reflected light, and having a waveguide head and a waveguide foot, the waveguide head abutting the tuner housing head and the waveguide foot disposed toward the tuner housing foot; a piezoelectric crystal or other device or arrangement for providing a compressive force, disposed so as to abut the waveguide foot and also to abut the tuner housing foot, the means for applying a compressive force for exerting a compressive force on the span of waveguide along the direction of the axis of the span of waveguide, the compressive force being sufficient to alter the grating so as to affect the wavelength of light reflected by the grati
    Type: Grant
    Filed: November 3, 2000
    Date of Patent: October 22, 2002
    Assignee: CiDRA Corporation
    Inventors: Timothy J. Bailey, Robert N. Brucato, Michael A. Davis, Alan D. Kersey, Martin A. Putnam, Paul E. Sanders, James S. Sirkis
  • Patent number: 6453108
    Abstract: An athermal grating design has a Bragg grating unit and a lever arrangement. In operation, the Bragg grating unit responds to an optical signal, a change of temperature and a lever force for offsetting thermally-induced changes in the Bragg grating unit, for providing a grating signal that does not change in relation to change of temperature. The lever arrangement responds to a change of temperature, for providing the level force to the grating to compensate for the change in the temperature. The Bragg grating unit includes a large diameter waveguide cane structure. The lever arrangement may include a top plate, a bottom plate, a lever arm pivotally coupled between the top plate and the bottom plate, and a rod coupled between the top plate and the bottom plate on one side of the lever arm. The Bragg grating unit is arranged between the top plate and the bottom plate on another side of the lever arm. The level arm and the rod have different coefficients of expansion.
    Type: Grant
    Filed: September 30, 2000
    Date of Patent: September 17, 2002
    Assignee: CiDRA Corporation
    Inventor: James S. Sirkis