Patents by Inventor James W. Kronberg

James W. Kronberg has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11618874
    Abstract: Compositions and methods are provided for modulating the growth, development and repair of bone, cartilage or other connective tissue. Devices and stimulus waveforms are provided to differentially modulate the behavior of osteoblasts, chondrocytes and other connective tissue cells to promote proliferation, differentiation, matrix formation or mineralization for in vitro or in vivo applications. Continuous-mode and pulse-burst-mode stimulation of cells with charge-balanced signals may be used. Bone, cartilage and other connective tissue growth is stimulated in part by nitric oxide release through electrical stimulation and may be modulated through co-administration of NO donors and NO synthase inhibitors. Bone, cartilage and other connective tissue growth is stimulated in part by release of BMP-2 and BMP-7 in response to electrical stimulation to promote differentiation of cells.
    Type: Grant
    Filed: December 19, 2019
    Date of Patent: April 4, 2023
    Assignee: MEDRELIEF INC.
    Inventors: James W. Kronberg, Timothy Ganey, Stephen L. Gordon
  • Publication number: 20220079493
    Abstract: An electrode system includes an electrode, a connector, and a cable with an in- line radio-frequency filter module comprising resistors and inductors without any deliberately added capacitance. The resistors are arranged in an alternating series of resistors and inductors, preferably with resistors at both outer ends, and connected electrically in series. The in-line module is located at a specific location along the wire, chosen through computer modeling and real-world testing for minimum transfer of received RF energy to a patient's skin, such as between 100 cm and 150 cm from the electrode end of a 240 centimeter cable. The total resistance of the resistors plus cable, connectors and solder is 1000 ohms or less; while the total inductance is roughly 1560 nanohenries. The inductors do not include ferrite or other magnetic material and are, together with the resistors, stock components thereby simplifying manufacture and reducing cost.
    Type: Application
    Filed: October 1, 2021
    Publication date: March 17, 2022
    Inventors: James W. Kronberg, Harrison M. Floyd, Daniel E. McCoy, Gabriel Orsinger
  • Patent number: 11160483
    Abstract: An electrode system includes an electrode, a connector, and a cable with an in-line radio-frequency filter module comprising resistors and inductors without any deliberately added capacitance. The resistors are arranged in an alternating series of resistors and inductors, preferably with resistors at both outer ends, and connected electrically in series. The in-line module is located at a specific location along the wire, chosen through computer modeling and real-world testing for minimum transfer of received RF energy to a patient's skin, such as between 100 cm and 150 cm from the electrode end of a 240 centimeter cable. The total resistance of the resistors plus cable, connectors and solder is 1000 ohms or less; while the total inductance is roughly 1560 nanohenries. The inductors do not include ferrite or other magnetic material and are, together with the resistors, stock components thereby simplifying manufacture and reducing cost.
    Type: Grant
    Filed: September 15, 2020
    Date of Patent: November 2, 2021
    Assignee: RHYTHMLINK INTERNATIONAL, LLC
    Inventors: James W. Kronberg, Harrison Floyd, Daniel E. McCoy, Gabriel Orsinger
  • Publication number: 20210000372
    Abstract: An electrode system includes an electrode, a connector, and a cable with an in-line radio-frequency filter module comprising resistors and inductors without any deliberately added capacitance. The resistors are arranged in an alternating series of resistors and inductors, preferably with resistors at both outer ends, and connected electrically in series. The in-line module is located at a specific location along the wire, chosen through computer modeling and real-world testing for minimum transfer of received RF energy to a patient's skin, such as between 100 cm and 150 cm from the electrode end of a 240 centimeter cable. The total resistance of the resistors plus cable, connectors and solder is 1000 ohms or less; while the total inductance is roughly 1560 nanohenries. The inductors do not include ferrite or other magnetic material and are, together with the resistors, stock components thereby simplifying manufacture and reducing cost.
    Type: Application
    Filed: September 15, 2020
    Publication date: January 7, 2021
    Inventors: James W. KRONBERG, Harrison FLOYD, Daniel E. MCCOY, Gabriel ORSINGER
  • Publication number: 20200140802
    Abstract: Compositions and methods are provided for modulating the growth, development and repair of bone, cartilage or other connective tissue. Devices and stimulus waveforms are provided to differentially modulate the behavior of osteoblasts, chondrocytes and other connective tissue cells to promote proliferation, differentiation, matrix formation or mineralization for in vitro or in vivo applications. Continuous-mode and pulse-burst-mode stimulation of cells with charge-balanced signals may be used. Bone, cartilage and other connective tissue growth is stimulated in part by nitric oxide release through electrical stimulation and may be modulated through co-administration of NO donors and NO synthase inhibitors. Bone, cartilage and other connective tissue growth is stimulated in part by release of BMP-2 and BMP-7 in response to electrical stimulation to promote differentiation of cells.
    Type: Application
    Filed: December 19, 2019
    Publication date: May 7, 2020
    Inventors: James W. Kronberg, Timothy Ganey, Stephen L. Gordon
  • Patent number: 10544388
    Abstract: Compositions and methods are provided for modulating the growth, development and repair of bone, cartilage or other connective tissue. Devices and stimulus waveforms are provided to differentially modulate the behavior of osteoblasts, chondrocytes and other connective tissue cells to promote proliferation, differentiation, matrix formation or mineralization for in vitro or in vivo applications. Continuous-mode and pulse-burst-mode stimulation of cells with charge-balanced signals may be used. Bone, cartilage and other connective tissue growth is stimulated in part by nitric oxide release through electrical stimulation and may be modulated through co-administration of NO donors and NO synthase inhibitors. Bone, cartilage and other connective tissue growth is stimulated in part by release of BMP-2 and BMP-7 in response to electrical stimulation to promote differentiation of cells.
    Type: Grant
    Filed: November 15, 2017
    Date of Patent: January 28, 2020
    Assignee: MEDRELIEF INC.
    Inventors: James W. Kronberg, Timothy Ganey, Stephen L. Gordon
  • Patent number: 10317074
    Abstract: A hand-held, disposable incinerator for medications and electronic storage media includes a body and a lid, a layer of insulation, and a chemical burn agent, which on ignition produces both heat and oxygen to destroy the contents. Exhaust gases pass through a non-combustible filter to remove most solid particles and contaminants, followed by a second, higher-efficiency filter. Hot gases exiting from the incinerator then desirably ignite again from their own heat, consuming remaining volatile organic matter distilled from the items being destroyed. An igniter, which may be a fuse, a pull-tab-activated pyrotechnic delay or an electronically remote-triggered igniter, provides a delay for the safety of the person using the incinerator. Heat generated within the burn chamber decomposes most organic materials, melts soft metals including aluminum and electronic solder, and renders data storage devices unreadable. At least an inner portion of the device may be safely discarded.
    Type: Grant
    Filed: November 1, 2017
    Date of Patent: June 11, 2019
    Assignee: Mini Incinerator, LLC
    Inventors: Brett P. Hamilton, Lisa A. Hamilton, James W. Kronberg
  • Patent number: 10086198
    Abstract: A bioelectric signal generation and application method generates a signal that comprises a succession of pulses arranged either in continuous trains or in separated bursts; in which each pulse within a train or burst comprises at least three distinct intervals of time; in which the first said interval of time has one definite polarity and sufficient current density and duration to cause motion of calcium ions (Ca++) in relation to less strongly charged components of a body, cell or tissue, such as proteins and especially the protein calmodulin (CaM); in which the second said interval of time has substantially zero current density and is of sufficient duration to allow any proteins or other molecules which became distorted by electric fields present during said first interval, and especially CaM, to relax back into their normal, undistorted shapes, said first and second intervals of time thus comprising a “two-step electric process.
    Type: Grant
    Filed: October 12, 2015
    Date of Patent: October 2, 2018
    Assignee: APOGEE MEDICAL, LLC
    Inventor: James W Kronberg
  • Publication number: 20180169698
    Abstract: A process for imparting improved toughness and durability, improving the surface appearance, and enhancing the coloration of a porous gypsum article created by 3D printing, casting or other means. The process includes the steps of first warming and drying the article; next, dipping it while warm into a bath of ultraviolet-activated liquid polyester resin at a lower temperature than the article, so the heat of the article lowers the resin's viscosity as air in the pores contracts and draws the resin in. The resin is chosen to have an index of refraction after curing as close as possible to that of pure gypsum. The resin is cured with ultraviolet light before applying a surface finishing coat to the cured resin by a second dipping into the same resin followed by curing or by spray-painting or other coating technique.
    Type: Application
    Filed: May 26, 2016
    Publication date: June 21, 2018
    Applicant: ZVERSE ,INC.
    Inventor: James W. KRONBERG
  • Patent number: 9981411
    Abstract: A structural polymeric composite includes a stiffening layer. The composite is made in a continuous extrusion process in which the stiffening layer is pulled through a cross-head die as a polymer is extruded over it. The layer includes a film or textile carrier, a filler of carbon fibers, fiberglass, organic fibers or minerals forming a mat. A binder may be dispersed over the mat and a second carrier applied. The mat is subjected to heat and pressure to soften the carriers and binder so they penetrate into the interstices of the filler and binds mechanically with them and the carriers and binder bind chemically with each other to form the stiffening layer. A polymer is then extruded over the stiffening layer, which may be used flat, provided with holes or punches for composite action with the polymer, formed into a profile, or segmented to provide spaced-apart stiffening layers.
    Type: Grant
    Filed: November 17, 2016
    Date of Patent: May 29, 2018
    Assignee: Marhaygue, LLC
    Inventors: Guerry E. Green, James W. Kronberg
  • Publication number: 20180072979
    Abstract: Compositions and methods are provided for modulating the growth, development and repair of bone, cartilage or other connective tissue. Devices and stimulus waveforms are provided to differentially modulate the behavior of osteoblasts, chondrocytes and other connective tissue cells to promote proliferation, differentiation, matrix formation or mineralization for in vitro or in vivo applications. Continuous-mode and pulse-burst-mode stimulation of cells with charge-balanced signals may be used. Bone, cartilage and other connective tissue growth is stimulated in part by nitric oxide release through electrical stimulation and may be modulated through co-administration of NO donors and NO synthase inhibitors. Bone, cartilage and other connective tissue growth is stimulated in part by release of BMP-2 and BMP-7 in response to electrical stimulation to promote differentiation of cells.
    Type: Application
    Filed: November 15, 2017
    Publication date: March 15, 2018
    Inventors: James W. Kronberg, Timothy Ganey, Stephen L. Gordon
  • Publication number: 20180036921
    Abstract: A structural polymeric composite includes a stiffening layer. The composite is made in a continuous extrusion process in which the stiffening layer is pulled through a cross-head die as a polymer is extruded over it. The layer includes a film or textile carrier, a filler of carbon fibers, fiberglass, organic fibers or minerals forming a mat. A binder may be dispersed over the mat and a second carrier applied. The mat is subjected to heat and pressure to soften the carriers and binder so they penetrate into the interstices of the filler and binds mechanically with them and the carriers and binder bind chemically with each other to form the stiffening layer. A polymer is then extruded over the stiffening layer, which may be used flat, provided with holes or punches for composite action with the polymer, formed into a profile, or segmented to provide spaced-apart stiffening layers.
    Type: Application
    Filed: November 17, 2016
    Publication date: February 8, 2018
    Inventors: Guerry E. Green, James W. Kronberg
  • Patent number: 9845452
    Abstract: Compositions and methods are provided for modulating the growth, development and repair of bone, cartilage or other connective tissue. Devices and stimulus waveforms are provided to differentially modulate the behavior of osteoblasts, chondrocytes and other connective tissue cells to promote proliferation, differentiation, matrix formation or mineralization for in vitro or in vivo applications. Continuous-mode and pulse-burst-mode stimulation of cells with charge-balanced signals may be used. Bone, cartilage and other connective tissue growth is stimulated in part by nitric oxide release through electrical stimulation and may be modulated through co-administration of NO donors and NO synthase inhibitors. Bone, cartilage and other connective tissue growth is stimulated in part by release of BMP-2 and BMP-7 in response to electrical stimulation to promote differentiation of cells.
    Type: Grant
    Filed: March 20, 2017
    Date of Patent: December 19, 2017
    Assignee: MEDRELIEF INC.
    Inventors: James W. Kronberg, Timothy Ganey, Stephen L. Gordon
  • Publication number: 20170226463
    Abstract: Compositions and methods are provided for modulating the growth, development and repair of bone, cartilage or other connective tissue. Devices and stimulus waveforms are provided to differentially modulate the behavior of osteoblasts, chondrocytes and other connective tissue cells to promote proliferation, differentiation, matrix formation or mineralization for in vitro or in vivo applications. Continuous-mode and pulse-burst-mode stimulation of cells with charge-balanced signals may be used. Bone, cartilage and other connective tissue growth is stimulated in part by nitric oxide release through electrical stimulation and may be modulated through co-administration of NO donors and NO synthase inhibitors. Bone, cartilage and other connective tissue growth is stimulated in part by release of BMP-2 and BMP-7 in response to electrical stimulation to promote differentiation of cells.
    Type: Application
    Filed: March 20, 2017
    Publication date: August 10, 2017
    Inventors: James W. Kronberg, Timothy Ganey, Stephen L. Gordon
  • Patent number: 9630001
    Abstract: Compositions and methods are provided for modulating the growth, development and repair of bone, cartilage or other connective tissue. Devices and stimulus waveforms are provided to differentially modulate the behavior of osteoblasts, chondrocytes and other connective tissue cells to promote proliferation, differentiation, matrix formation or mineralization for in vitro or in vivo applications. Continuous-mode and pulse-burst-mode stimulation of cells with charge-balanced signals may be used. Bone, cartilage and other connective tissue growth is stimulated in part by nitric oxide release through electrical stimulation and may be modulated through co-administration of NO donors and NO synthase inhibitors. Bone, cartilage and other connective tissue growth is stimulated in part by release of BMP-2 and BMP-7 in response to electrical stimulation to promote differentiation of cells.
    Type: Grant
    Filed: June 9, 2014
    Date of Patent: April 25, 2017
    Assignee: MEDRELIEF INC.
    Inventors: James W. Kronberg, Timothy Ganey, Stephen L. Gordon
  • Patent number: 8960440
    Abstract: A system is provided for monitoring the removal of blister pack contents. An array of spatially-extended, electrically parallel breakable traces made from electrically resistive material is formed behind a corresponding array of blisters of a blister card. Then this array is connected in series with a reference resistor to form a voltage divider. All resistive traces are formed from the same materials in a single operation. Blister breakage is determined using changes in the ratio of the resistances of the array and the divider. A predictive algorithm is used to adjust the threshold resistance ratio change that signals blister breakage and voltage ratios are used to adjust for battery output changes over time. Breakage events and their time of occurrence are recorded in nonvolatile memory for later retrieval. Additional resistors can be used for activating the system and detecting tampering.
    Type: Grant
    Filed: December 27, 2013
    Date of Patent: February 24, 2015
    Assignee: Verimed Holdings, LLC
    Inventor: James W. Kronberg
  • Publication number: 20140350649
    Abstract: Compositions and methods are provided for modulating the growth, development and repair of bone, cartilage or other connective tissue. Devices and stimulus waveforms are provided to differentially modulate the behavior of osteoblasts, chondrocytes and other connective tissue cells to promote proliferation, differentiation, matrix formation or mineralization for in vitro or in vivo applications. Continuous-mode and pulse-burst-mode stimulation of cells with charge-balanced signals may be used. Bone, cartilage and other connective tissue growth is stimulated in part by nitric oxide release through electrical stimulation and may be modulated through co-administration of NO donors and NO synthase inhibitors. Bone, cartilage and other connective tissue growth is stimulated in part by release of BMP-2 and BMP-7 in response to electrical stimulation to promote differentiation of cells.
    Type: Application
    Filed: June 9, 2014
    Publication date: November 27, 2014
    Inventors: James W. Kronberg, Timothy Ganey, Stephen L. Gordon
  • Patent number: 8785196
    Abstract: Compositions and methods are provided for modulating the growth, development and repair of bone, cartilage or other connective tissue. Devices and stimulus waveforms are provided to differentially modulate the behavior of osteoblasts, chondrocytes and other connective tissue cells to promote proliferation, differentiation, matrix formation or mineralization for in vitro or in vivo applications. Continuous-mode and pulse-burst-mode stimulation of cells with charge-balanced signals may be used. Bone, cartilage and other connective tissue growth is stimulated in part by nitric oxide release through electrical stimulation and may be modulated through co-administration of NO donors and NO synthase inhibitors. Bone, cartilage and other connective tissue growth is stimulated in part by release of BMP-2 and BMP-7 in response to electrical stimulation to promote differentiation of cells.
    Type: Grant
    Filed: October 14, 2010
    Date of Patent: July 22, 2014
    Assignee: MedRelief Inc.
    Inventors: James W. Kronberg, Timothy Ganey, Stephen L. Gordon
  • Patent number: 8159312
    Abstract: A method and class of circuit configurations for coupling low-frequency signals from one stage of an electronic apparatus to another stage, from the outside world to such a stage, or from such a stage to the outside world, through the use of a plurality of symmetrical double-layer capacitors combined with other electronic components are disclosed. The capacitors are used for signal transmission while blocking direct current, rather than for energy storage. Use of double-layer capacitors in place of more conventional capacitors permits the transmission of a much wider range of signals with far less distortion. The technology is particularly well-adapted to use in medical devices, including bioelectronic stimulators, where redundant devices are required for safety in case of single component failure while unacceptable levels of distortion may occur when conventional components are used.
    Type: Grant
    Filed: June 27, 2007
    Date of Patent: April 17, 2012
    Assignee: MedRelief Inc.
    Inventor: James W. Kronberg
  • Patent number: RE43374
    Abstract: An apparatus for generating an electrical signal for use in biomedical applications, including two timing blocks for generating timing intervals T1-T7, an interconnection block for combining these intervals into an output signal having predetermined relationships among the intervals, an output block for transmitting the output signal to a load, and, optionally, a filter for removing unwanted frequency components from the output signal and an adjustment block for selecting from among a plurality of output signals with predetermined characteristics. The output is a repeating succession of a burst of rectangular waves, an equalizing pulse (if needed) to cancel net DC, and a rest period of no signal.
    Type: Grant
    Filed: March 18, 2005
    Date of Patent: May 8, 2012
    Assignee: MedRelief Inc.
    Inventor: James W. Kronberg