Patents by Inventor James W. Love

James W. Love has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6811744
    Abstract: A method and apparatus for embedding features and controlling material composition in a three-dimensional structure (130) is disclosed. The invention enables the control of material characteristics, within a structure (130) made from a plurality of materials, directly from computer rendering of solid models of the components. The method uses stereolithography and solid model computer file formats to control a multi-axis head (480) in a directed material deposition process (123). Material feedstock (126, 127) is deposited onto a pre-heated substrate (19). Depositions (15) in a layer-by-layer pattern, defined by solid models (141, 146), create a three-dimensional article having complex geometric details. Thermal management of finished solid articles (250-302), not available through conventional processing techniques, is enabled by embedded voids (152) and/or composite materials (126, 127), which include dissimilar metals (210, 216).
    Type: Grant
    Filed: April 22, 2002
    Date of Patent: November 2, 2004
    Assignee: Optomec Design Company
    Inventors: David M. Keicher, James W. Love, Kevin J. Dullea, James L. Bullen, Pierrette H. Gorman, Mark E. Smith
  • Patent number: 6656409
    Abstract: Uniform cooling of complex surface shapes in injection mold tooling can be accomplished with cooling channels that conform to the shapes of the mold cavity or mold cone. By conventional methods this can be very difficult to accomplish. By applying methods of material deposition or material sintering, which include but are not limited to, laser metal deposition, where material is deposited on a layer by layer basis, certain cooling or heating passages could be integrated into the manufactured component that follow the contours and profiles of the mold's complex surfaces. These passages would act as internal heat sinks with a much higher surface area for heat transfer than traditional drilled and plugged straight passages. These geometries could also be incorporated into complex geometries such as, but not limited to, turbine blades where the cooling passages can follow the contour of the outer shape, provide a more uniform or controlled heat transfer from the component.
    Type: Grant
    Filed: July 7, 2000
    Date of Patent: December 2, 2003
    Assignee: Optomec Design Company
    Inventors: David M. Keicher, James W. Love
  • Publication number: 20030206820
    Abstract: A method and apparatus for embedding features and controlling material composition in a three-dimensional structure (130) is disclosed. The invention enables the control of material characteristics, within a structure (130) made from a plurality of materials, directly from computer renderings of solid models of the components. The method uses stereolithography and solid model computer file formats to control a multi-axis head (480) in a directed material deposition process (123). Material feedstock (126, 127) is deposited onto a pre-heated substrate (19). Depositions (15) in a layer-by-layer pattern, defined by solid models (141, 146), create a three-dimensional article having complex geometric details. Thermal management of finished solid articles (250-302), not available through conventional processing techniques, is enabled by embedded voids (152) and/or composite materials (126, 127), which include dissimilar metals (210, 216).
    Type: Application
    Filed: April 22, 2002
    Publication date: November 6, 2003
    Inventors: David M. Keicher, James W. Love, Kevin J. Dullea, James L. Bullen, Pierrette H. Gorman, Mark E. Smith
  • Patent number: 6391251
    Abstract: A method and apparatus for embedding features and controlling material composition in a three-dimensional structure (130) is disclosed. The invention enables the control of material characteristics, within a structure (130) made from a plurality of materials, directly from computer renderings of solid models of the components. The method uses stereolithography and solid model computer file formats to control a multi-axis head (480) in a directed material deposition process (123). Material feedstock (126, 127) is deposited onto a pre-heated substrate (19). Depositions (15) in a layer-by-layer pattern, defined by solid models (141, 146), create a three-dimensional article having complex geometric details. Thermal management of finished solid articles (250-302), not available through conventional processing techniques, is enabled by embedded voids (152) and/or composite materials (126, 127), which include dissimilar metals (210, 216).
    Type: Grant
    Filed: May 9, 2000
    Date of Patent: May 21, 2002
    Assignee: Optomec Design Company
    Inventors: David M. Keicher, James L. Bullen, Pierrette H. Gorman, James W. Love, Kevin J. Dullea, Mark E. Smith